Study on the Assets Integrity Management System of Long Distance Oil and Gas Pipeline

Author(s):  
Weibin Wang ◽  
Wenqiang Tong ◽  
Zupei Yang ◽  
Muyang Ai ◽  
Hongsheng Cui ◽  
...  

The integrity management system of steel pipeline is an international popular pattern of assets management at present. It has important meaning and effect that establishing and consummating a set of assets integrity management (AIM) system with practical application value in all the integrity management system. By using the AIM system, risk can be identified and ranged timely; more detect and assess data may be gained; the maintenance and remedy cost can be saved and the monitoring become more convenient and quick. Thereby, the AIM system can contribute to dynamic and circular integrity management. According to the latest research development of integrity management in the international, this paper illustrate the assets integrity management in detail from the aspect of the application of assets integrity management, design way, workflow, and function introducing, which is based on the design module of assets integrity management.

Author(s):  
Karine Kutrowski ◽  
Rob Bos ◽  
Jean-Re´gis Piccardino ◽  
Marie Pajot

On January 4th 2007 TIGF published the following invitation for tenders: “Development and Provision of a Pipeline Integrity Management System”. The project was awarded to Bureau Veritas (BV), who proposed to meet the requirements of TIGF with the Threats and Mitigations module of the PiMSlider® suite extended with some customized components. The key features of the PiMSlider® suite are: • More than only IT: a real integrity philosophy, • A simple intuitive tool to store, display and update pipeline data, • Intelligent search utilities to locate specific information about the pipeline and its surrounding, • A scalable application, with a potentially unlimited number of users, • Supervision (during and after implementation) by experienced people from the oil and gas industry. This paper first introduces TIGF and the consortium BV – ATP. It explains in a few words the PIMS philosophy captured in the PiMSlider® suite and focuses on the added value of the pipeline Threats and Mitigations module. Using this module allows the integrity analyst to: • Prioritize pipeline segments for integrity surveillance purposes, • Determine most effective corrective actions, • Assess the benefits of corrective actions by means of what-if scenarios, • Produce a qualitative threats assessment for further use in the integrity management plan, • Optimize integrity aspects from a design, maintenance and operational point of view, • Investigate the influence of different design criteria for pipeline segments. To conclude, TIGF presents the benefits of the tool for their Integrity Management department and for planning inspection and for better knowledge of their gas transmission grid.


2015 ◽  
Vol 74 (4) ◽  
Author(s):  
M. K. F. M. Ali ◽  
N. Md. Noor ◽  
N. Yahaya ◽  
A. A. Bakar ◽  
M. Ismail

Pipelines play an extremely important role in the transportation of gases and liquids over long distance throughout the world. Internal corrosion due to microbiologically influenced corrosion (MIC) is one of the major integrity problems in oil and gas industry and is responsible for most of the internal corrosion in transportation pipelines. The presence of microorganisms such as sulfate reducing bacteria (SRB) in pipeline system has raised deep concern within the oil and gas industry. Biocide treatment and cathodic protection are commonly used to control MIC. However, the solution is too expensive and may create environmental problems by being too corrosive. Recently, Ultraviolet (UV) as one of the benign techniques to enhance mitigation of MIC risk in pipeline system has gained interest among researchers. An amount of 100 ml of modified Baar’s medium and 5 ml of Desulfovibrio vulgaris (strain 7577) seeds was grown in 125 ml anaerobic vials with carbon steel grade API 5L-X70 coupons at the optimum temperature of 37°C and pH 9.5 for fifteen days. This was then followed by exposing the medium to UV for one hour. Results from present study showed that UV radiation has the ability to disinfect bacteria, hence minimizing the risk of metal loss due to corrosion in steel pipeline. 


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Qingshan Feng ◽  
Rui Li ◽  
Hong Zhang

The bending strain of long-distance oil and gas pipelines can be calculated by the in-line inspection tool which used inertial measurement unit (IMU). The bending strain is used to evaluate the strain and displacement of the pipeline. During the bending strain inspection, the dent existing in the pipeline can affect the bending strain data as well. This paper presents a novel method to model and calculate the pipeline dent based on the bending strain. The technique takes inertial mapping data from in-line inspection and calculates depth of dent in the pipeline using Bayesian statistical theory and neural network. To verify accuracy of the proposed method, an in-line inspection tool is used to inspect pipeline to gather data. The calculation of dent shows the method is accurate for the dent, and the mean relative error is 2.44%. The new method provides not only strain of the pipeline dent but also the depth of dent. It is more benefit for integrity management of pipeline for the safety of the pipeline.


Sign in / Sign up

Export Citation Format

Share Document