deep burial
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 22)

H-INDEX

20
(FIVE YEARS 3)

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-26
Author(s):  
Emese Laczkó-Dobos ◽  
Susanne Gier ◽  
Orsolya Sztanó ◽  
Rastislav Milovský ◽  
Kinga Hips

Deeply buried Pannonian (Upper Miocene) siliciclastic deposits show evidence of secondary porosity development via dissolution processes at a late stage of diagenesis. This is demonstrated by detailed petrographic (optical, cathodoluminescence, fluorescence, and scanning electron microscopy) as well as elemental and stable isotope geochemical investigations of lacustrine deposits from the Makó Trough, the deepest depression within the extensional Pannonian back-arc basin. The analyses were carried out on core samples from six wells located in various positions from centre to margins of the trough. The paragenetic sequence of three formations was reconstructed with special emphasis on sandstone beds in a depth interval between ca 2700 and 5500 m. The three formations consist, from bottom to top, of (1) open-water marls of the Endrőd Formation, which is a hydrocarbon source rock with locally derived coarse clastics and (2) a confined and (3) an unconfined turbidite system (respectively, the Szolnok and the Algyő Formation). In the sandstones, detrital grains consist of quartz, feldspar, and mica, as well as sedimentary and metamorphic rock fragments. The quartz content is high in the upper, unconfined turbidite formation (Algyő), whereas feldspars and rock fragments are more widespread in the lower formations (Szolnok and Endrőd). Eogenetic minerals are framboidal pyrite, calcite, and clay minerals. Mesogenetic minerals are ankerite, ferroan calcite, albite, quartz, illite, chlorite, and solid bituminous organic matter. Eogenetic finely crystalline calcite yielded δ13 C V − PDB values from 1.4 to 0.7‰ and δ18 O V − PDB values from –6.0 to –7.4‰, respectively. Mesogenetic ferroan calcite yielded δ13 C V − PDB values from 2.6 to –1.2‰ and δ18 O V − PDB values from –8.3 to –14.0‰, respectively. In the upper part of the turbidite systems, remnants of the migrated organic matter are preserved along pressure dissolution surfaces. All these features indicate that compaction and mineral precipitations resulted in tightly cemented sandstones prior to hydrocarbon migration. Interconnected, secondary, open porosity is associated with pyrite, kaolinite/dickite, and postdates of the late-stage calcite cement. This indicates that dissolution processes took place in the deep burial realm in an extraformational fluid-dominated diagenetic system. The findings of this study add a unique insight to the previously proposed hydrological model of the Pannonian Basin and describe the complex interactions between the basinal deposits and the basement blocks.


2020 ◽  
Author(s):  
Ying Xiong ◽  
Li-Chao Wang ◽  
Xiu-Cheng Tan ◽  
Yun Liu ◽  
Ming-Jie Liu ◽  
...  

AbstractThe Middle Ordovician subsalt Majiagou Formation in the Ordos Basin comprises pervasively dolomitized shallow marine limestone and is a major reservoir rich in natural gas resources. Four types of dolomite matrix and cement were identified based on petrographic textures: (very) finely crystalline, non-planar to planar-s matrix dolomite (Md1); finely to medium crystalline, planar-s to planar-e matrix dolomite (Md2); microbialites comprising dolomite microcrystals (Md3); and finely to coarsely crystalline dolomite cement (Cd). The Md1 and Md2 dolomites were controlled by alternating lagoon-shoal facies and have δ13C values (− 1.89 to + 1.45‰ VPDB for Md1, − 1.35 to + 0.42‰ VPDB for Md2) that fall within or are slightly higher than the coeval seawater, suggesting the dolomitizing fluid of evaporated seawater. Md2 dolomite was then subjected to penecontemporaneous karstification by meteoric water and burial recrystallization by sealed brines during diagenesis, as indicated by its relatively lower δ18O values (− 8.89 to − 5.73‰ VPDB) and higher 87Sr/86Sr ratios (0.708920–0.710199). Md3 dolomite comprises thrombolite and stromatolite and is interpreted to form by a combination of initial microbial mediation and later replacive dolomitization related to evaporated seawater. Cd dolomite was associated with early-formed karst system in the Md2 host dolomite. The lowest δ18O values (− 11.78 to − 10.18‰ VPDB) and 87Sr/86Sr ratios (0.708688–0.708725) and fluid inclusion data (Th: 123–175 °C) indicate involvement of hydrothermal fluid from which the Cd dolomite precipitated during deep burial. These results reveal the multi-stage dolomitization history of the Majiagou Formation and provide new constraints on fluid origins and dolomites evolution during deep burial in old superimposed basins, such as the Ordos Basin and elsewhere.


2020 ◽  
Vol 11 (5) ◽  
pp. 1895-1899
Author(s):  
Valby van Schijndel ◽  
David H. Cornell ◽  
Robert Anczkiewicz ◽  
Anders Scherstén
Keyword(s):  

2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Guochao Yan ◽  
Longjian Bai ◽  
Jianping Feng ◽  
Zhiqiang Zhang

In order to investigate the effect of deep burial metamorphism on the wettability of coal during deep burial metamorphism, a superficial coal sample (∼90 m) and a deep coal sample (∼490 m) collected from two main mining seams were selected to simulate the deep burial metamorphism process. The wettability of two coal samples during deep burial metamorphism was investigated by X-ray photoelectron spectroscopy (XPS), FTIR, zeta potential, and contact angle measurements. Besides, comprehensive DLVO interaction analyses between two coal samples from different mining depths were carried out through the zeta potentials measurements under different pH values. The XPS results demonstrate that the content of surface oxygen atom and oxygen-containing functional group for superficial coal tends to be higher than that of deep coal. The FTIR results indicate that the peak intensity of oxygen-containing functional groups for the superficial is higher than that of deep coal, implying the stronger surface hydrophobicity of deep coal compared to superficial coal. The contact angle of superficial coal is lower than that of deep coal. The zeta potential and DLVO theory analyses of superficial particles and deep coal particles indicate that deep burial metamorphism process might be favorable for bubble-particle collision and attachment, while might be unfavorable for the wetting process oppositely. Based on the surface chemistry characterization and theory analyses, this study is expected to give a theoretical insight into the efficient processing or dedusting process of coals experiencing different deep burial metamorphism processes in the future.


Sign in / Sign up

Export Citation Format

Share Document