The Development of Large Diameter and Thickness X80 HSAW Linepipe

Author(s):  
Weiwei Li ◽  
Chunyong Huo ◽  
Qiurong Ma ◽  
Yaorong Feng

For the requirement of 2nd West-East Pipeline Project of China, X80 large diameter & thickness linepipe with helical seam submerged arc welded (HSAW) were developed, with 1219 mm OD and 18.4 mm WT. Acicular ferrite type and super-low carbon, high Niobium chemical composition pipeline steel was adopted for the base material. The very stringent requirements at −10 °C for toughness, i.e. 220J/170J for average/minimum for pipe body and 80J/60J for average/minimum for weld and HAZ were meet successfully. The yield strength loss due to Bauschinger effect was found lower than 20MPa, which benefited. The very low residual stress level was testified by cut-ring test which cuts a section pipe about exceed 100mm long, and then cut the section apart from welds 100mm along the longitudinal direction.

Author(s):  
Chunyong Huo ◽  
Qiurong Ma ◽  
Weiwei Li ◽  
Yaorong Feng ◽  
Helin Li ◽  
...  

X70 large diameter linepipe with helical seam SAW were developed, with 1016mm OD and 14.6mm WT. Acicular ferrite type linepipe steel is adopted for the base material, which was found having high toughness and low yield strength loss after pipe forming. The very stringent requirements for toughness, i.e. 190J/140J for average/minimum for pipe body and 120J/90J for average/minimum for weld and HAZ were meet successfully. The yield strength loss due to Bauschinger effect was found lower than 20 MPa, which benefited.


Author(s):  
Charles Stallybrass ◽  
Olga Dmitrieva ◽  
Andreas Liessem ◽  
Jens Schröder

There is a strong interest worldwide to transport large gas volumes from remote areas and hostile environments to the market. Pipe producers are therefore faced with increasingly demanding requirements both with regard to the toughness of the base material and the heat-affected zone. The toughness of the base material depends primarily on the steel composition and the TM processing conditions. Impressive levels of toughness in the base material were achieved by extensive alloy and process development over the past decades. These were realised by balancing the steel composition and processing parameters to give an optimum microstructure with a low grain size and homogeneous distribution of phases. During double submerged arc welding (DSAW) in the production of large-diameter linepipes, the heat-affected zone (HAZ) undergoes severe changes in the microstructure that include grain coarsening by about one order of magnitude and phase transformation during cooling and intercritical reheating. These have a negative impact on the toughness close to the fusion line. The higher austenite grain size close to the fusion line leads to a coarser structure after the phase transformation with larger carbon-rich M/A-phase particles than are typically observed in the base material in the as-rolled condition. This causes a drop of the toughness close to the fusion line compared to the base material. Classically, the carbon equivalent is an empirical measure for the weldability of steels and is known to correlate with the maximum hardness. However, its purpose is not to reflect the effect of individual alloying elements on the HAZ-toughness. The present paper addresses the relationship between base material composition and the HAZ-toughness of linepipe steels. An experimental investigation was carried out at EUROPIPE GmbH in cooperation with Salzgitter Mannesmann Forschung GmbH in which the chemical composition of laboratory heats was varied systematically. These heats were thermomechanically rolled to a wall thickness of 30 mm and subsequently used for submerged arc welding trials. The processing parameters during rolling and welding were held constant in the trials in order to ensure that the effect of the alloying elements could be isolated. The fusion line toughness was tested at −30°C and the microstructure was investigated by high-resolution scanning electron microscopy. This was complemented by microstructure investigations in the HAZ of large-diameter pipe material between the X65 and X80 strength levels. It was found that the influence of alloying elements on the HAZ-toughness is only reflected to some degree by the commonly used carbon equivalents, especially at similar strength levels. The results of the investigation were used for optimisation of the HAZ-toughness in production.


2010 ◽  
Vol 638-642 ◽  
pp. 3032-3037
Author(s):  
Hitoshi Asahi ◽  
Yasuhiro Shinohara ◽  
Takuya Hara

For the constant transmission of gas through a pipeline, steel weight decreases linearly with an increase in the strength of the linepipe irrespective of pipe size and internal pressure. Thus, high-strength large-diameter linepipe up to X120 has been developed and is now being applied to reduce pipe costs, transportation costs and construction costs. To meet the excellent weldability and low production costs required for the linepipe application of bainite produced through using Thermo-Mechanical Control Processing (TMCP) from low carbon chemistry is essential. Dual phase steel made by means of the introduction of ferrite in the bainite matrix mitigates the inferior properties of bainite. Herein, the production parameters affecting the microstructure and the properties are overviewed.


2014 ◽  
Vol 997 ◽  
pp. 517-521
Author(s):  
Li Feng Fan ◽  
Ying Gao ◽  
Jian Bin Yun ◽  
Lin Feng Dong

Crimping is widely used in production of large diameter submerged-arc welding pipes. Traditionally, the designers obtain the technical parameters for crimping from experience or trial-errors by experiments. To tackle this problem, a theoretical analytical model is proposed to analysis crimping forming process. In this paper, taking the crimping of X80 steel Φ1219mm×22mm×12000mm welding pipe for instance, the theoretical analytical model is constructed by quadratic polynomial curve fitting technique and mechanics theory. And it is verified by a comparison with experiment results. Thus, the presented model of this research provides an effective path to design crimping parameters.


2016 ◽  
Vol 56 (1) ◽  
pp. 126-131 ◽  
Author(s):  
Qianlin Wu ◽  
Zhonghua Zhang ◽  
Yaoheng Liu

2017 ◽  
Vol 1143 ◽  
pp. 52-57
Author(s):  
Elena Scutelnicu ◽  
Carmen Catalina Rusu ◽  
Bogdan Georgescu ◽  
Octavian Mircea ◽  
Melat Bormambet

The paper addresses the development of advanced welding technologies with two and three solid wires for joining of HSLA API-5l X70 (High-strength low-alloy) steel plates with thickness of 19.1 mm. The experiments were performed using a multi-wire Submerged Arc Welding (SAW) system that was developed for welding of steels with solid, tubular and cold wires, in different combinations. The main goal of the research was to assess the mechanical performances of the welded joints achieved by multi-wire SAW technology and then to compare them with the single wire variant, as reference system. The welded samples were firstly subjected to NDT control by examinations with liquid penetrant, magnetic particle, ultrasonic and gamma radiation, with the aim of detecting the specimens with flaws and afterwards to reconsider and redesign the corresponding Welding Procedure Specifications (WPS). The defect-free welded samples were subjected to tensile, Charpy V-notch impact and bending testing in order to analyse and report the mechanical behaviour of API-5l X70 steel during multi-wire SAW process. The experimental results were processed and comparatively discussed. The challenge of the investigation was to find the appropriate welding technology which responds simultaneously to the criteria of quality and productivity. Further research on metallurgical behaviour of the base material will be developed, in order to conclude the complete image of the SAW process effects and to understand how the multi-wire technologies affect the mechanical and metallurgical characteristics of the API-5L X70 steel used in pipelines fabrication.


Author(s):  
Trevor Place ◽  
Greg Sasaki ◽  
Colin Cathrea ◽  
Michael Holm

Strength and leak testing (AKA ‘hydrotesting’, and ‘pressure testing’) of pipeline projects remains a primary method of providing quality assurance on new pipeline construction, and for validating structural integrity of the as-built pipeline [1][2][3]. A myriad of regulations surround these activities to ensure soundness of the pipeline, security of the environment during and after the pressure testing operation, as well as personnel safety during these activities. CAN/CSA Z662-11 now includes important clauses to ensure that the pipeline designer/builder/operator consider the potential corrosive impacts of the pressure test media [4]. This paper briefly discusses some of the standard approaches used in the pipeline industry to address internal corrosion caused by pressure test mediums — which often vary according to the scope of the pipeline project (small versus large diameter, short versus very long pipelines) — as well as the rationale behind these different approaches. Case studies are presented to highlight the importance of considering pressure test medium corrosiveness. A practical strategy addressing the needs of long-distance transmission pipeline operators, involving a post-hydrotest inhibitor rinse, is presented.


Sign in / Sign up

Export Citation Format

Share Document