Modeling and Optimization of HAZ Characteristics for Submerged Arc Welded High Strength Pipeline Steel

2018 ◽  
Vol 72 (2) ◽  
pp. 439-454 ◽  
Author(s):  
Satish Kumar Sharma ◽  
Sachin Maheshwari ◽  
Ratnesh Kumar Raj Singh
2016 ◽  
Vol 16 (4) ◽  
pp. 263-271 ◽  
Author(s):  
Satish Kumar Sharma ◽  
Sachin Maheshwari

AbstractIn any type of welding, its heat affected zone (HAZ) is the most critical section where the probability of hydrogen or solidification cracking is prominent. Continuous efforts are being applied by researchers and welders to minimize HAZ and its alterations. For the same purpose, by varying the factors of submerged arc welding (SAW) process which directly influences the heat input and cooling rate of the weld, experiments are carried out on the plates of micro-alloyed high strength pipeline steel. Voltage, welding speed, contact tube to work distance, wire feed rate and preheating temperature are taken as process variables. The experiments are designed according to the central composite rotatable design approach of response surface methodology (RSM). Multi-objective optimization of HAZ characteristics (HAZ area and its hardness) is carried out using grey relational analysis (GRA). To un-correlate the correlated characteristics of HAZ, principal component analysis (PCA) approach is coupled with GRA. The results of the confirmatory test have shown an improvement of 28.51 % and 5.94 % in area and hardness value of HAZ respectively at optimal setting combination of SAW process parameters.


Author(s):  
Waris N Khan ◽  
Rahul Chhibber

This work investigates the microstructure and mechanical properties of 2507 super duplex stainless steel and API X70 high strength low alloy steel weld joint. This joint finds application in offshore hydrocarbon drilling riser and oil–gas pipelines. Coated shielded metal arc welding electrodes have been designed and extruded on 309L filler and their performance compared with a commercial austenitic electrode E309L. Filler 309L solidifies in ferrite-austenite (F-A) mode with a resultant microstructure comprising skeletal ferrites with austenite distributed in the interdendritic region. Results of tensile and impact tests indicate that weld fabricated with laboratory-developed electrodes has higher ductility and impact energy than the commercial electrode. The tensile strength and weld hardness of commercial electrodes are superior. The laboratory-made electrode’s microhardness is lower than the commercial electrodes, making the former less prone to failure. An alternative welding electrode coating composition has been suggested through this work and found to be performing satisfactorily and comparable to the commercially available electrodes.


2017 ◽  
Vol 1143 ◽  
pp. 52-57
Author(s):  
Elena Scutelnicu ◽  
Carmen Catalina Rusu ◽  
Bogdan Georgescu ◽  
Octavian Mircea ◽  
Melat Bormambet

The paper addresses the development of advanced welding technologies with two and three solid wires for joining of HSLA API-5l X70 (High-strength low-alloy) steel plates with thickness of 19.1 mm. The experiments were performed using a multi-wire Submerged Arc Welding (SAW) system that was developed for welding of steels with solid, tubular and cold wires, in different combinations. The main goal of the research was to assess the mechanical performances of the welded joints achieved by multi-wire SAW technology and then to compare them with the single wire variant, as reference system. The welded samples were firstly subjected to NDT control by examinations with liquid penetrant, magnetic particle, ultrasonic and gamma radiation, with the aim of detecting the specimens with flaws and afterwards to reconsider and redesign the corresponding Welding Procedure Specifications (WPS). The defect-free welded samples were subjected to tensile, Charpy V-notch impact and bending testing in order to analyse and report the mechanical behaviour of API-5l X70 steel during multi-wire SAW process. The experimental results were processed and comparatively discussed. The challenge of the investigation was to find the appropriate welding technology which responds simultaneously to the criteria of quality and productivity. Further research on metallurgical behaviour of the base material will be developed, in order to conclude the complete image of the SAW process effects and to understand how the multi-wire technologies affect the mechanical and metallurgical characteristics of the API-5L X70 steel used in pipelines fabrication.


Author(s):  
Weiwei Li ◽  
Chunyong Huo ◽  
Qiurong Ma ◽  
Yaorong Feng

For the requirement of 2nd West-East Pipeline Project of China, X80 large diameter & thickness linepipe with helical seam submerged arc welded (HSAW) were developed, with 1219 mm OD and 18.4 mm WT. Acicular ferrite type and super-low carbon, high Niobium chemical composition pipeline steel was adopted for the base material. The very stringent requirements at −10 °C for toughness, i.e. 220J/170J for average/minimum for pipe body and 80J/60J for average/minimum for weld and HAZ were meet successfully. The yield strength loss due to Bauschinger effect was found lower than 20MPa, which benefited. The very low residual stress level was testified by cut-ring test which cuts a section pipe about exceed 100mm long, and then cut the section apart from welds 100mm along the longitudinal direction.


Author(s):  
Matthew James ◽  
Teresa Melfi ◽  
Rajeev Katiyar

Current requirements for high strength pipelines are placing extreme demands on welding consumables. These applications include strain based pipelines using X80 as well as traditionally designed pipelines using X100 and even X120 base materials. Traditional procedures used in the pipemills for both the seam weld and the jointer weld utilize a SAW process with very high dilution and high heat inputs. Existing consumables are not able to meet the minimum strength requirements under these conditions. A project was undertaken to develop an alloy system that could meet these requirements while still allowing the use of traditional welding processes. Testing results with this new consumable are presented and future work is described. This alloy system may also prove useful in other high dilution applications where high strength is required.


RSC Advances ◽  
2017 ◽  
Vol 7 (59) ◽  
pp. 36876-36885 ◽  
Author(s):  
Bingying Wang ◽  
Yu Yin ◽  
Zhiwei Gao ◽  
Zhenbo Hou ◽  
Wenchun Jiang

A developed surface enhancement technique, USRP, was applied on X80 pipeline steel and the stress corrosion cracking susceptibility was studied.


1987 ◽  
Vol 3 (02) ◽  
pp. 111-118
Author(s):  
John C. West

Steels with 50 ksi and up yield points usually acquire their strength from some form of heat treatment. Most of these steels, 11/2 in. thick and up, must be welded using sustained preheat and controlled interpass temperatures, plus controlled welding heat input of approximately 50 to 60 kJ/in. These two items can add as much as 50 percent to the cost of submerged-arc welding, and increases of up to 30 percent are common for manual welding when compared with lower-strength steels previously used. To reduce costs, a quenched and precipitation-hardened steel, ASTM A710 Grade A Class 3, with a high degree of weldability, was tested. This steel, which can be welded without sustained preheat and almost unlimited heat input, has been extensively tested in thicknesses from 21/4 through 6 in. Although this steel costs more than the usual quenched-and-tempered plates at these strength levels, reductions of 40 to 75 percent in welding labor costs are probable. In addition, sizeable material savings should be realized when these items are used in place of HY-80 and HY-100.


Sign in / Sign up

Export Citation Format

Share Document