Topology Analysis and Optimization Design of Coal Bed Methane Gathering System in China

Author(s):  
Jun Zhou ◽  
XiaoPing Li ◽  
Mengya Cheng ◽  
Tao Deng ◽  
Jing Gong

China is abundant in coalbed methane (CBM) resource. The unconventional natural gas reserves has reached 36.81*1012 m3. The Qinshui Basin in Shanxi Province is the largest gas field among CBM gas fields in China which are commercially exploited since the year 2003. In order to solve some typical problems in CBM production, this article considered the geographical characteristics of the fields, introduced and analyzed the low pressure gathering and transporting process and facilities, as well as the important techniques. Respectively, this article introduced the surface gathering and transporting procedure, analyzed the characteristics and topological structure; it also proposed the optimization scheme of combining steel pipes with PE pipes in processing system. The gathering and transporting processes of remote areas should be flexible and able to solve the problems during gas recovery from both largely exploited CBM blocks and remote blocks with low production. Thus a more reasonable system design should be proposed. To carry out the scheme, it first defined the topological structure of the system with graph theory, then established the economic model of the combined scheme. The article calculated the critical length of pipeline between two methods and defined the concept of “remote” well area. With the analysis of the actual conditions in a certain block in Qinshui Shanxi, the conclusion shows that: the scheme of laying pipelines can make more profit, which is consistent with the actual field situation., At the same time, we chose a phased optimization method, which divided the optimization of entire system into several sub-problems, including well group division, nodes connection relationship, determination of plant’s optimal position, and optimization of pipe diameter. Then we established optimization model that takes the investment costs of each stage as objective functions. The example shows that compared with the artificial design result, the total length of pipeline was reduced by 4.576 km, pipeline investment by 7.35×104 US$, with the respective rates of returns of 19.57% and 4.89%. The number of valve sets in the system fell from 16 to 11 (31%). By analyzing the investment and construction scale of the existing pipe network and optimal pipe network we have proved that the method has an ideal optimization effect. These techniques and schemes can give reasonable instructions in CBM surface gathering system design, powerfully promoting the development of the Chinese CBM industry.

2014 ◽  
Vol 6 ◽  
pp. 147381 ◽  
Author(s):  
Jun Zhou ◽  
Jing Gong ◽  
Xiaoping Li ◽  
Tong Tong ◽  
Mengya Cheng ◽  
...  

Because of the increasing energy demand, coalbed methane (CBM) which is a high-quality, clean new energy gets more and more national attention. As one of the keys of CBM's successful development, the investment of surface gathering system accounts for a significant proportion of the entire field's investment. This paper studied the optimization of CBM gathering system, combined with system process characteristics and the status of extraction and production. We chose a phased optimization method such that the optimization of entire system was divided into several subproblems, including well group's optimal partition, determination of gathering valve set's optimal position, optimization of trunk and branch pipe network's layout, and optimization of pipe diameter. Then we established optimization model such that the least investment costs of each stage were to be as objective function. When solving the model, full consideration of the low pressure and high complexity by which the CBM gathering and transportation pipeline network was characterized should be given. Through an example calculation, compared with artificial design result, the total investment decreased by 9.56%. We proved that the method has a good optimization effect by comparably analyzing the investment and construction scale of the existing pipe network and optimal pipe network.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1151
Author(s):  
Yanbao Liu ◽  
Zhigang Zhang ◽  
Wei Xiong ◽  
Kai Shen ◽  
Quanbin Ba

The increasing demand on coal production has led to the gradually increase of mining depth and more high methane mines, which bring difficulties in terms of coalbed methane (CBM) extraction. Hydraulic fracturing is widely applied to improve the production of CBM, control mine gas, and prevent gas outbursts. It improves coal bed permeability and accelerate desorption and migration of CBM. Even though the impacts of hydraulic fracturing treatment on the coal reservoirs are rare, negative effects could not be totally ignored. To defend this defect, the presented work aims to study the influence of water filtration on coal body deformation and permeability evolution. For this purpose, a simulation based finite element method was developed to build a solid-fluid coupled two-phase flow model using commercial software (COMSOL Multiphysics 5.4). The model was verified using production data from a long strike borehole from Wangpo coal mine in Shanxi Province, China. Several simulation scenarios were designed to investigate the adverse impacts of hydraulic fracturing on gas flow behaviors. The mechanisms of both relative and intrinsic permeability evolutions were analyzed, and simulation results were presented. Results show that the intrinsic permeability of the fracture system increases in the water injection process. The impacts of water imitation were addressed that a critical time was observed beyond which water cannot go further and also a critical pressure exists above which the hydraulic pressure would impair the gas flow. Sensitivity analysis also showed that a suitable time and pressure combination could be observed to maximize gas extraction. This work provides an efficient approach to guide the coal bed methane exploitation and other unconventional gas reservoirs.


2011 ◽  
Vol 402 ◽  
pp. 854-859
Author(s):  
Jin Shi ◽  
Xiao Dong Wu ◽  
Yong Sheng An ◽  
Li Peng Wang ◽  
Yu Yuan

The research on the development strategies of conventional gas field is quite mature both in and abroad, but less attention has been paid on development strategies of coalbed methane reservoirs. This paper elaborates the remarkable dissimilarities of development strategies between coalbed and conventional gas, including commingled development design, reasonable dewatering rate and well pattern design. Eventually, Liulin area, in Hedong coal field located in Shanxi Province, China, was taken as an example to conduct optimum design of development strategies by numerical simulation software. All the aspects mentioned above can provide guidance to China’s CBM development.


2017 ◽  
Vol 9 (2) ◽  
pp. 168781401769394
Author(s):  
Yang Yongan ◽  
Yang Juntao ◽  
Lei Jingyi ◽  
Li Jiajia

Because the coal-bed methane field is influenced by factors such as low pressure, slow velocity, terrain, and condensed water, which lead to the fact that the design is different from gathering design of conventional gas field, how to make full use of wellhead pressure and maximize the wellhead pressure ability is an important link of surface engineering optimization. Therefore, we need to analyze the factors which influence the pressure drop of the gas-gathering pipe network to improve the efficiency of the coal-bed methane field surface gathering. We first contrasted the two hydraulic analysis software (PIPEPHASE and TGNET) for the analysis of coal seam gas field adaptability. By comparing the simulation results with the actual data, we found that the PIPEPHASE software is better to analyze the hydraulic situation of pipe network in the coal-bed methane field. Then, using PIPEPHASE for network simulation and contrasting the 9 state equations and 26 kinds of pressure drop formula calculation results, SRK state equation and BBM pressure drop formula are recommended. We analyze the inlet temperature, pressure, and other nine factors affecting gas extraction pipeline pressure drop according to the practical experience and put forward the suggestions as follows: (1) in order to reduce the pressure drop and increase the ability of pipeline, burying pipeline under the permafrost and improving the inlet pressure are suggested; (2) The higher the inlet pressure, the more obvious the pipeline efficiency influences the pipeline pressure drop, so the inlet pressure and pipeline efficiency should be reasonably controlled in order to reduce the pressure drop; (3) The higher the pipeline pressure, the greater the wall roughness influences the pipeline pressure drop, also the greater the pressure can damage, so we should try to use small wall roughness materials.


2021 ◽  
Vol 251 ◽  
pp. 04011
Author(s):  
Fabrizio Ameli ◽  
Marco Battaglieri ◽  
Mariangela Bondí ◽  
Andrea Celentano ◽  
Sergey Boyarinov ◽  
...  

An effort is underway to develop streaming readout data acquisition system for the CLAS12 detector in Jefferson Lab’s experimental Hall-B. Successful beam tests were performed in the spring and summer of 2020 using a 10GeV electron beam from Jefferson Lab’s CEBAF accelerator. The prototype system combined elements of the TriDAS and CODA data acquisition systems with the JANA2 analysis/reconstruction framework. This successfully merged components that included an FPGA stream source, a distributed hit processing system, and software plugins that allowed offline analysis written in C++ to be used for online event filtering. Details of the system design and performance are presented.


Sign in / Sign up

Export Citation Format

Share Document