Comparative Integrity Evaluation of Counterbore-Tapered and Back-Beveled Weld Joints

Author(s):  
Michael Martens ◽  
Yaoshan Chen ◽  
Ming Liu

Back-beveled transition welds for joining unequal wall thickness are often used in gas and oil transmission pipelines, as recommended in the pipeline codes and standards, such as CSA Z662, ASME B31.8, and ASME 31.4. However, one North American pipeline operator has successively utilized a counterbore-tapered design for transition of unequal wall thicknesses for over 30 years. The design philosophy of the counterbore-tapered joint is to reduce the stress concentrations in the heat affected zone, facilitate the welding of unequal wall thickness and NDT while achieving better quality, reliability, and productivity. By conducting a comparative finite element analysis of the two joint designs, the present study evaluated the pressure containment capacities, the stress concentration factors, the stress intensity factors, and the limit loads of plastic collapses for both the counterbore-tapered and the back-beveled designs. The effect of a key design parameter, the counterbore length, on the integrity of the counterbore design was also examined. The results of the comparative analysis showed that compared to the back-beveled joint, when the pipe materials of unequal wall thickness have the same strength, the counterbore-tapered joint has the same pressure containment capacity as the back-beveled joint. The back-bevel design offers lower stress concentration factor, lower stress intensity factor, and higher limit load of plastic collapse than the back-beveled design.

2006 ◽  
Vol 324-325 ◽  
pp. 29-32 ◽  
Author(s):  
Tian Shu Song ◽  
Hong Liang Li ◽  
Jung Qiang Dong

In this paper, the dynamic interaction is investigated theoretically between a crack and a circular cavity in an infinite piezoelectric medium under time-harmonic incident anti-plane shearing. The formulations are based on the method of complex variable and Green’s function. The resulting dynamic stress intensity factors at the crack’s tip and dynamic stress concentration factors at the cavity’s edge are obtained with crack-division technique. Numerical results are plotted to show how the frequencies of incident wave, the piezoelectric characteristic parameters of the material and the geometry of the crack and the circular cavity influence upon the dynamic stress intensity factors and dynamic stress concentration factors.


Author(s):  
Glenn Sinclair ◽  
Ajay A Kardak

Abstract When stress concentration factors are not available in handbooks, finite element analysis has become the predominant method for determining their values. For such determinations, there is a need to know if they have sufficient accuracy. Tuned Test Problems can provide a way of assessing the accuracy of stress concentration factors found with finite elements. Here we offer a means of constructing such test problems for stress concentrations within boundaries that have local constant radii of curvature. These problems are tuned to their originating applications by sharing the same global geometries and having slightly higher peak stresses. They also have exact solutions, thereby enabling a precise determination of the errors incurred in their finite element analysis.


1972 ◽  
Vol 94 (3) ◽  
pp. 815-824 ◽  
Author(s):  
J. C. Gerdeen

An approximate theoretical analysis is presented for the determination of stress concentration factors in thick walled cylinders with sideholes and crossholes. The cylinders are subjected to both internal pressure and external shrink-fit pressure. Stress concentration factors are plotted as functions of the geometrical ratios of outside diameter-to-bore diameter, and bore diameter-to-sidehole diameter. Theoretical results are compared to experimental values available in the literature and results of experiments described in a separate paper.


2007 ◽  
Vol 353-358 ◽  
pp. 1995-1998
Author(s):  
Byeong Choon Goo

The purpose of this paper is to develop an estimation formula of stress concentration factors of butt-welded components under tensile loading. To investigate the influence of weld bead profiles on stress concentration factors of double V groove butt-welded joints, butt-welded specimens were made by CO2 gas metal arc welding. And the three main parameters, the toe radius, flank angle and bead height were measured by a profile measuring equipment. By using the measured data, the influence of three parameters on the stress concentration factors was investigated by a finite element analysis. It is shown that the three parameters have similar effects on the stress concentration factors. According to the simulation results, a formula to estimate the stress concentration factors of butt-weld welded structures was proposed and the estimated concentration factors from the formula were compared with the results obtained by the finite element analysis. The two results are in a good agreement.


1983 ◽  
Vol 18 (1) ◽  
pp. 7-14 ◽  
Author(s):  
T H Hyde ◽  
B J Marsden

The finite element method has been used to investigate the behaviour of axisymmetric loaded projections (e.g., bolts) subjected to axial tension and bending. The results show that existing data for stepped shafts, which have the axial tension and bending loads applied remote from the region of the step, cannot be applied to loaded projections with the same geometry. For h/d (head thickness to shank diameter ratio) values greater than 0.66 and 0.41 for axial tension and bending, respectively, the stress concentration factors are independent of h/d, load position, and D/d (head diameter to shank diameter ratio) for D/d in the range 1.5 ≤ D/d ≤ 2.0. Smaller h/d values result in large increases in the stress concentration factors due to dishing of the head.


Sign in / Sign up

Export Citation Format

Share Document