The Misconception of Employing CVN Toughness as Key-Measure in Ductile Crack Arrest Prediction for Modern Line-Pipe Steels

Author(s):  
Alexander Völling ◽  
Christoph Kalwa ◽  
Marion Erdelen-Peppler

Since the late 1960s’ the Battelle Two-curve (BTC) model is the standard method applied in setting up design requirements with regard to the prevention of long-running ductile fracture in pipelines. It is a straightforward tool employing Charpy-V notch (CVN) toughness as key-measure for material resistance against crack propagation. On basis of pipe dimensions, material strength, and under consideration of decompression behavior of the transferred media, it enables to set up requirements for a minimum CVN toughness level to achieve crack arrest. Overall applicability of the BTC model is based on calibration of the underlying equations to a sound data-base, including both full-scale burst test results and small-scale laboratory testing data involving typical line-pipe grades at that period, i.e. up to grade X70 steels with below 100 J upper-shelf CVN toughness. Now over the last decades, mechanical behavior of line-pipe steels was improved significantly. Responding to market demands, higher grades were designed and also toughness levels were raised as outcome of R&D efforts within the steel industry. Unfortunately, stepping outside the original material data-base from BTC model calibration, this method did forfeit its reliability. At the beginning, mispredictions were mainly related to higher grade steels and elevated operating pressures. But more recent full-scale tests did reveal discrepancies in application of the BTC model also for so-called new vintage steels, i.e. grades actually being inside the original data base for model calibration but from current production routes. With regard to applicability/reliability of BTC model based predictions for crack arrest, the origin of uncertainty has particularly been traced back to the involved material toughness measure. Nowadays, it is common sense that the CVN upper-shelf toughness value inadequately describes the resistance against running ductile fracture. More recent thoughts coherently argue towards closer involving stress-strain response and plastic deformation capacities of the material. On basis of results for grades X65, X80 and X100, the general relation between ductility and toughness is discussed. Finally, an elastic-plastic fracture mechanics related analytical approach is introduced which enables to quantify the resistance against ductile fracture propagation. The objective is to provide a reliable procedure for crack arrest prediction in line-pipe steels.

Author(s):  
D. Rudland ◽  
D.-J. Shim ◽  
G. M. Wilkowski ◽  
S. Kawaguchi ◽  
N. Hagiwara ◽  
...  

The ductile fracture resistance of newer line pipe steels is of concern for high grade/strength steels and higher-pressure pipeline designs. Although there have been several attempts to make improved ductile fracture arrest models, the model that is still used most frequently is the Battelle Two-Curve Method (TCM). This analysis incorporates the gas-decompression behavior with the fracture toughness of the pipe material to predict the minimum Charpy energy required for crack arrest. For this analysis, the influence of the backfill is lumped into one empirically developed “soil” coefficient which is not specific to soil type, density or strength. No attempt has been made to quantify the effects of soil depth, type, total density or strength on the fracture speeds of propagating cracks in line pipe steels. In this paper, results from small-scale and large-scale burst tests with well-controlled backfill conditions are presented and analyzed to determine the effects of soil depth and cohesiveness on the fracture speeds. Combining this data with the past full-scale burst data used in generating the original backfill coefficient provides additional insight into the effects of the soil properties on the fracture speeds and the arrest of running ductile fractures in line pipe materials.


Author(s):  
Andrew Cosham ◽  
Brian N. Leis ◽  
Mures Zarèa ◽  
Fabian Orth ◽  
Valerie Linton

Abstract A time-delayed failure due to stress-activated creep (cold-creep) will occur if the applied load is held constant at a level above the threshold. The results of small and full-scale tests on line pipe steels conducted by the Battelle Memorial Institute and the British Gas Corporation in the 1960s and 70s indicated that the (empirical) threshold for a time-delayed failure was approximately 85–95% SAPF (straight-away-pressure-to-failure). The line pipe steels were Grades X52 or X60, and the full-size equivalent Charpy V-notch impact energy (where reported) did not exceed 35 J. The strength and toughness of line pipe steels has significantly increased over the decades due to developments in steel-making and processing. The question then is whether an empirical threshold based on tests on lower strength and lower toughness steels is applicable to higher strength and higher toughness steels. A Tripartite Project was established to answer this question. The Australian Pipelines and Gas Association (APGA), the European Pipeline Research Group (EPRG) and the Pipeline Research Council International (PRCI) collaborated in conducting six full-scale step-load-hold tests on higher strength and higher toughness steels. Companion papers present the other aspects of this multi-year project. The line pipe supplied for testing is summarised below. • Identifier — Dimensions and Grade — f.s.e. Charpy V-notch impact energy at 0 C • APGA [A] — 457.0 × 9.1 mm, Grade X70M, ERW — 263 J • EPRG [E] — 1016.0 × 13.6 mm, Grade X70M, SAWL — 165 J • PRCI [P] — 609.6 × 6.4 mm, Grade X65, SAWL — 160 J Six step-load-hold tests, each with four part-through-wall defects, were conducted. Test Nos. APGA 1 and 2, and Nos. EPRG 1 and 2 were conducted at Engie, France. Test Nos. PRCI 1 and 2 were conducted at EWI, USA. The full-scale tests, and associated small-scale testing, are described and discussed. A time-delayed failure due to stress-activated creep occurred in each of the step-load-hold tests. The failures occurred during a hold-period at 93.7–104.4% SAPF, after a hold of approximately 1.0–13.9 hours. The results of the six step-load-hold tests are consistent with a threshold for a time-delayed failure of approximately 90% SAPF.


Author(s):  
Chris Timms ◽  
Doug Swanek ◽  
Duane DeGeer ◽  
Arjen Meijer ◽  
Ping Liu ◽  
...  

The TurkStream pipeline project is designed to transport approximately 32 billion cubic meters of natural gas annually from Russia to Turkey under the Black Sea, with more than 85% of the deep-water route being deeper than 2000 m. The offshore section is intended to consist of two parallel lines, each approximately 900 km long. The preliminary stages of the front end engineering design (pre-FEED) phase was managed by INTECSEA. To support the analyses and design of the deepest portions, a full scale collapse test program was performed by C-FER Technologies (C-FER). This collapse test program, which included 62 full-scale collapse and pressure+bend tests, 54 medium-scale ring collapse tests, and hundreds of small-scale tests, was primarily aimed at measuring, quantifying and documenting the increase in pipe strength and collapse resistance resulting from the thermal induction heat treatment effect (thermal ageing) that arises during the pipe coating process. Two grades of 32-inch (813 mm) outside diameter (OD) line-pipe, SAWL450 and SAWL485 with wall thicknesses of 39.0 mm or 37.4 mm, respectively, were supplied from various mills for testing. The collapse test program objectives were as follows: • Determine the collapse resistance of line pipes originating from various pipe mills; • Determine the pressure+bend performance of line pipes originating from various pipe mills; • Measure the effect of thermal ageing on material and collapse testing results, including the impact of multiple thermal cycles; and • Evaluate the results of medium-scale ring collapse tests as compared to full-scale tests. This paper presents selected results of this work, along with some comparisons to predictive equations.


Author(s):  
Andrew Cosham ◽  
Brian N. Leis ◽  
Paul Roovers ◽  
Mures Zarèa ◽  
Valerie Linton

Abstract A time-delayed failure due to stress-activated creep (cold-creep) is a failure that occurs under a constant load and with no growth due corrosion, fatigue or some other environmentally assisted time-dependent degradation mechanism. A time-delayed failure is prevented by reducing the pressure. ASME B31.4 and B31.8 recommend a 20 percent reduction, to 80 percent of the pressure at the time of damage or discovery. T/PM/P/11 Management Procedure for Inspection, assessment and repair of damaged (non-leaking) steel pipelines, an internal procedure used by National Grid, specifies a 15 percent reduction. The guidance in ASME B31.4 and B31.8, and in T/PM/P/11, is directly or indirectly based on the results of tests on the long term stability of defects conducted by the Battelle Memorial Institute and British Gas Corporation in the 1960s and 70s. The line pipe steels were Grades X52 or X60, and the full-size equivalent Charpy V-notch impact energy (where reported) did not exceed 35 J. The tests indicated that the threshold for a time-delayed failure was approximately 85–95% SAPF (straightaway-pressure-to-failure). The strength and toughness of line pipe steels has significantly increased over the decades due to developments in steel-making and processing. The question then is whether an empirical threshold based on tests on lower strength and lower toughness steels is applicable to higher strength and higher toughness steels. In the Tripartite Project, the Australian Pipelines and Gas Association (APGA), the European Pipeline Research Group (EPRG) and the Pipeline Research Council International (PRCI) collaborated in conducting full-scale six step-load-hold tests on higher strength and higher toughness steels. Companion papers present the other aspects of this multi-year project. An empirical threshold for a time-delayed failure is estimated using the results of the six step-load-hold tests. That estimate is also informed by the other published small and full-scale tests (on lower strength and lower toughness steels). The Ductile Flaw Growth Model is used to infer the effect of strength and toughness on the threshold for a time-delayed failure. A 15 percent pressure reduction, to 85 percent of the pressure at the time of damage (or of the maximum pressure that has occurred since the time of damage), is considered to be sufficient to prevent a time-delayed failure due to stress-activated creep in lower and higher toughness, in lower and higher strength, and in older and newer line pipe steels.


Author(s):  
Karl Christoph Meiwes ◽  
Susanne Höhler ◽  
Marion Erdelen-Peppler ◽  
Holger Brauer

During reel-laying repeated plastic strains are introduced into a pipeline which may affect strength properties and deformation capacity of the line pipe material. Conventionally the effect on the material is simulated by small-scale reeling simulation tests. For these, coupons are extracted from pipes that are loaded in tension and compression and thermally aged, if required. Afterwards, specimens for mechanical testing are machined from these coupons and tested according to the corresponding standards. Today customers often demand additional full-scale reeling simulation tests to assure that the structural pipe behavior meets the strain demands as well. Realistic deformations have to be introduced into a full-size pipe, followed by aging, sampling and mechanical testing comparable to small-scale reeling. In this report the fitness for use of a four-point-bending test rig for full-scale reeling simulation tests is demonstrated. Two high-frequency-induction (HFI) welded pipes of grade X65M (OD = 323.9 mm, WT = 15.9 mm) from Salzgitter Mannesmann Line Pipe GmbH (MLP) are bent with alternate loading. To investigate the influences of thermal aging from polymer-coating process one test pipe had been heat treated beforehand, in the same manner as if being PE-coated. After the tests mechanical test samples were machined out of the plastically strained pipes. A comparison of results from mechanical testing of material exposed to small- and full-scale reeling simulation is given. The results allow an evaluation of the pipe behavior as regards reeling ability and plastic deformation capacity.


Author(s):  
Igor Pyshmintsev ◽  
Alexey Gervasyev ◽  
Victor Carretero Olalla ◽  
Roumen Petrov ◽  
Andrey Arabey

The microstructure and fracture behavior of the base metal of different X80 steel line pipe lots from several pipeline projects were analyzed. The resistance of the pipes to ductile fracture propagation was determined by the full-scale burst tests. The high intensity of fracture surface separation (secondary brittle cracks parallel to the rolling plane of the plate) appeared to be the main factor reducing the specific fracture energy of ductile crack propagation. A method for quantitative analysis of microstructure allowing estimation of the steel’s tendency to form separations is proposed. The procedure is based on the EBSD data processing and results in Cleavage Morphology Clustering (CMC) parameter evaluation which correlates with full-scale and laboratory mechanical test results. Two special laboratory mechanical test types utilizing SENT and Charpy test concepts for prediction of ductile fracture arrest/propagation in a pipe were developed and included into Gazprom specifications.


Author(s):  
G. Wilkowski ◽  
D.-J. Shim ◽  
Y. Hioe ◽  
S. Kalyanam ◽  
F. Brust

Newer vintage line-pipe steels, even for lower grades (i.e., X60 to X70) have much different fracture behavior than older line-pipe steels. These differences significantly affect the fracture control aspects for both brittle fracture and ductile fracture of new pipelines. Perhaps one of the most significant effects is with brittle fracture control for new line-pipe steels. From past work brittle fracture control was achieved through the specification of the drop-weight-tear test (DWTT) in API 5L3. With the very high Charpy energy materials that are being made today, brittle fracture will not easily initiate from the pressed notch of the standard DWTT specimen, whereas for older line-pipe steels that was the normal behavior. This behavior is now referred to as “Abnormal Fracture Appearance” (AFA). More recent work shows a more disturbing trend that one can get 100-percent shear area in the standard pressed-notch DWTT specimen, but the material is really susceptible to brittle fracture. This is a related phenomenon due to the high fracture initiation energy in the standard DWTT specimen that we call “Abnormal Fracture Behavior” (AFB). This paper discusses modified DWTT procedures and some full-scale results. The differences in the actual behavior versus the standard DWTT can be significant. Modifications to the API 5L3 test procedure are needed. The second aspect deals with empirical fracture control for unstable ductile fractures based on older line-pipe steel tests initially from tests 30-years ago. As higher-grade line-pipe steels have been developed, a few additional full-scale burst tests have shown that correction factors on the Charpy energy values are needed as the grade increases. Those correction factors from the newer burst tests were subsequently found to be related to relationship of the Charpy energy values to the DWTT energy values, where the DWTT has better similitude than the Charpy test for fracture behavior (other than the transition temperature issue noted above). Once on the upper-shelf, recent data suggest that what was once thought to be a grade correction factor may really be due to steel manufacturing process changes with time that affect even new low-grade steels. Correction factors comparable to that for X100 steels have been indicated to be needed for even X65 grade steels. Hence the past empirical equations in Codes and Standards like B31.8 will significantly under-predict the actual values needed for most new line-pipe steels.


Author(s):  
Israel Marines-Garcia ◽  
Jorge A. Aldana-Díaz ◽  
Philippe P. Darcis ◽  
Hector M. Quintanilla

Offshore pipelines projects, installed by reel-laying operations, are gaining momentum due to the increasing worldwide capacity of Reel Lay Vessels. It is well known that reel-laying installation causes repeated plastic straining (cyclic deformation) and, as a consequence, cyclic strain and ageing test is usually required for qualifying line pipe materials for such installation method. This qualification is typically named reeling simulation. Reeling simulations can be made via full or small scale. In practice, full scale qualification lead time and full scale reeling simulation machines availability could be a constraint, thus, small scale reeling simulation is usually the best alternative. However, the similitude of small scale versus full scale simulations could be questioned. On this basis, an extensive study was carried-out considering tensile, toughness and sour testing, in order to evaluate the material response after reeling simulation, in order to clarify if the line pipe material will behave similarly regardless the straining method (small scale or full scale). Different small scale samples configuration for straining were tested, depending on the posterior mechanical or sour test, and two different full scale reeling simulation machines were used for plain pipes straining. Five seamless plain pipes, X65 line pipe were used for this study, with 3 (three) different outer diameters of 10.75″, 11.67″ & 16″ (273 mm, 296 mm & 406 mm). The current paper will present the main mechanical results of these materials after strain and ageing condition, comparing full and small scale straining methods.


Author(s):  
Oliver Hilgert ◽  
Susanne Höhler ◽  
Holger Brauer

Generally isotropic behavior is assumed and demanded in line pipe specifications. Especially in strain based design, compressive and tensile strain capacity models rely on iso-tropic assumptions. On the other hand every pipe has got an anisotropic material characteristic which effects the performance in strain based design. In this contribution HFI-welded steel tubes are investigated due to their underlying material anisotropy. Depending on their basic strip weld material and production process the anisotropy differs from UOE or spiral welded pipes. Especially, in radial direction of steel pipe mechanical properties are challenging to gain. Thus two methods are suggested to characterize the anisotropic parameters in all three pipe directions. A small scale approach evaluating Lankford values and a full scale method evaluating Hill factors are applied. While Lankford method relies on strains, Hills method relies on stresses. Both methods are explained and validated by internal pressure and full scale bending tests. Using the anisotropy parameters, their effect on strain based design is analyzed — both experimentally and numerically. In the end it is shown that distinct anisotropies can provide a benefit for HFI-welded steel tubes concerning strain capacity in strain based design applications.


Sign in / Sign up

Export Citation Format

Share Document