Effects of Soil Cohesiveness and Depth on Dynamic Ductile Fracture Speeds

Author(s):  
D. Rudland ◽  
D.-J. Shim ◽  
G. M. Wilkowski ◽  
S. Kawaguchi ◽  
N. Hagiwara ◽  
...  

The ductile fracture resistance of newer line pipe steels is of concern for high grade/strength steels and higher-pressure pipeline designs. Although there have been several attempts to make improved ductile fracture arrest models, the model that is still used most frequently is the Battelle Two-Curve Method (TCM). This analysis incorporates the gas-decompression behavior with the fracture toughness of the pipe material to predict the minimum Charpy energy required for crack arrest. For this analysis, the influence of the backfill is lumped into one empirically developed “soil” coefficient which is not specific to soil type, density or strength. No attempt has been made to quantify the effects of soil depth, type, total density or strength on the fracture speeds of propagating cracks in line pipe steels. In this paper, results from small-scale and large-scale burst tests with well-controlled backfill conditions are presented and analyzed to determine the effects of soil depth and cohesiveness on the fracture speeds. Combining this data with the past full-scale burst data used in generating the original backfill coefficient provides additional insight into the effects of the soil properties on the fracture speeds and the arrest of running ductile fractures in line pipe materials.

Author(s):  
D. Rudland ◽  
G. Wilkowski ◽  
B. Rothwell

The ductile fracture resistance of newer line pipe steels is of concern for higher grade/strength steels and higher-pressure pipeline designs. Although there have been several attempts to make improved ductile fracture arrest models, the model that is still used most frequently is the Battelle Two-Curve Ductile Fracture Arrest Model, which incorporates the gas-decompression behavior with the fracture toughness of the pipe material to predict the minimum Charpy energy required for crack arrest. For this model, the effect of backfill on the propagating crack fracture speeds is lumped into one empirically based “backfill coefficient,” which does not distinguish different soil types or strengths. Some modifications to this backfill coefficient have been proposed for frozen soil as a function of moisture content, and for water backfill for offshore applications, but no attempt has been made to quantify the effects of soil type, total density or strength on the fracture speeds of propagating cracks in line pipe steels. This paper presents the results from a series of small diameter pipe burst tests that were conducted with different soil backfills. The soils’ moisture content, density, and strength were fully characterized in situ and in the laboratory. In addition, fracture speed data in both unbackfilled and backfilled conditions were recorded. The comparison of the change in fracture speed as a function of soil type, moisture and strength gives valuable insight into the effects of soil on the arrest of running ductile fractures in line pipe materials.


Author(s):  
Alexander Völling ◽  
Christoph Kalwa ◽  
Marion Erdelen-Peppler

Since the late 1960s’ the Battelle Two-curve (BTC) model is the standard method applied in setting up design requirements with regard to the prevention of long-running ductile fracture in pipelines. It is a straightforward tool employing Charpy-V notch (CVN) toughness as key-measure for material resistance against crack propagation. On basis of pipe dimensions, material strength, and under consideration of decompression behavior of the transferred media, it enables to set up requirements for a minimum CVN toughness level to achieve crack arrest. Overall applicability of the BTC model is based on calibration of the underlying equations to a sound data-base, including both full-scale burst test results and small-scale laboratory testing data involving typical line-pipe grades at that period, i.e. up to grade X70 steels with below 100 J upper-shelf CVN toughness. Now over the last decades, mechanical behavior of line-pipe steels was improved significantly. Responding to market demands, higher grades were designed and also toughness levels were raised as outcome of R&D efforts within the steel industry. Unfortunately, stepping outside the original material data-base from BTC model calibration, this method did forfeit its reliability. At the beginning, mispredictions were mainly related to higher grade steels and elevated operating pressures. But more recent full-scale tests did reveal discrepancies in application of the BTC model also for so-called new vintage steels, i.e. grades actually being inside the original data base for model calibration but from current production routes. With regard to applicability/reliability of BTC model based predictions for crack arrest, the origin of uncertainty has particularly been traced back to the involved material toughness measure. Nowadays, it is common sense that the CVN upper-shelf toughness value inadequately describes the resistance against running ductile fracture. More recent thoughts coherently argue towards closer involving stress-strain response and plastic deformation capacities of the material. On basis of results for grades X65, X80 and X100, the general relation between ductility and toughness is discussed. Finally, an elastic-plastic fracture mechanics related analytical approach is introduced which enables to quantify the resistance against ductile fracture propagation. The objective is to provide a reliable procedure for crack arrest prediction in line-pipe steels.


Author(s):  
Karl Christoph Meiwes ◽  
Susanne Höhler ◽  
Marion Erdelen-Peppler ◽  
Holger Brauer

During reel-laying repeated plastic strains are introduced into a pipeline which may affect strength properties and deformation capacity of the line pipe material. Conventionally the effect on the material is simulated by small-scale reeling simulation tests. For these, coupons are extracted from pipes that are loaded in tension and compression and thermally aged, if required. Afterwards, specimens for mechanical testing are machined from these coupons and tested according to the corresponding standards. Today customers often demand additional full-scale reeling simulation tests to assure that the structural pipe behavior meets the strain demands as well. Realistic deformations have to be introduced into a full-size pipe, followed by aging, sampling and mechanical testing comparable to small-scale reeling. In this report the fitness for use of a four-point-bending test rig for full-scale reeling simulation tests is demonstrated. Two high-frequency-induction (HFI) welded pipes of grade X65M (OD = 323.9 mm, WT = 15.9 mm) from Salzgitter Mannesmann Line Pipe GmbH (MLP) are bent with alternate loading. To investigate the influences of thermal aging from polymer-coating process one test pipe had been heat treated beforehand, in the same manner as if being PE-coated. After the tests mechanical test samples were machined out of the plastically strained pipes. A comparison of results from mechanical testing of material exposed to small- and full-scale reeling simulation is given. The results allow an evaluation of the pipe behavior as regards reeling ability and plastic deformation capacity.


Author(s):  
K. A. Widenmaier ◽  
A. B. Rothwell

The use of high strength, high design-factor pipe to transport natural gas requires the careful design and selection of pipeline materials. A primary material concern is the characterization and control of ductile fracture initiation and arrest. Impact toughness in the form of Charpy V-notch energies or drop-weight tear tests is usually specified in the design and purchase of line pipe in order to prevent large-scale fracture. While minimum values are prescribed in various codes, they may not offer sufficient protection in pipelines with high pressure, cold temperature, rich gas designs. The implications of the crack driving force arising from the gas decompression versus the resisting force of the pipe material and backfill are examined. The use and limitations of the Battelle two-curve method as the standard model are compared with new developments utilizing crack-tip opening angle and other techniques. The methodology and reasoning used to specify the material properties for line pipe are described and the inherent limits and risks are discussed. The applicability of Charpy energy to predict ductile arrest in high strength pipes (X80 and above) is examined.


Author(s):  
G. Wilkowski ◽  
D-J. Shim ◽  
Y. Hioe ◽  
S. Kalyanam ◽  
M. Uddin

Current line-pipe steels have significantly higher Charpy upper-shelf energy than older steels. Many newer line-pipe steels have Charpy upper-shelf energy in the 300 to 500J range, while older line-pipe steels (pre-1970) had values between 30 and 60J. With this increased Charpy energy comes two different and important aspects of how to predict the brittle fracture arrestability for these new line-pipe steels. The first aspect of concern is that the very high Charpy energy in modern line-pipe steels frequently produces invalid results in the standard pressed-notch DWTT specimen. Various modified DWTT specimens have been used in an attempt to address the deficiencies seen in the PN-DWTT procedure. In examining fracture surfaces of various modified DWTT samples, it has been found that using the steady-state fracture regions with similitude to pipe burst test (regions with constant shear lips) rather than the entire API fracture area, results collapse to one shear area versus temperature curve for all the various DWTT specimens tested. Results for several different materials will be shown. The difficulty with this fracture surface evaluation is that frequently the standard pressed-notch DWTT only gives valid transitional fracture data up to about 20-percent shear area, and then suddenly goes to 100-percent shear area. The second aspect is that with the much higher Charpy energy, the pipe does not need as much shear area to arrest a brittle fracture. Some analyses of past pipe burst tests have been recently shown and some additional cases will be presented. This new brittle fracture arrest criterion means that one does not necessarily have to specify 85-percent shear area in the DWTT all the time, but the shear area needed for brittle fracture arrest depends on the pipeline design conditions (diameter, hoop stress) and the Charpy upper-shelf energy of the steel. Sensitivity studies and examples will be shown.


Author(s):  
Igor Pyshmintsev ◽  
Alexey Gervasyev ◽  
Victor Carretero Olalla ◽  
Roumen Petrov ◽  
Andrey Arabey

The microstructure and fracture behavior of the base metal of different X80 steel line pipe lots from several pipeline projects were analyzed. The resistance of the pipes to ductile fracture propagation was determined by the full-scale burst tests. The high intensity of fracture surface separation (secondary brittle cracks parallel to the rolling plane of the plate) appeared to be the main factor reducing the specific fracture energy of ductile crack propagation. A method for quantitative analysis of microstructure allowing estimation of the steel’s tendency to form separations is proposed. The procedure is based on the EBSD data processing and results in Cleavage Morphology Clustering (CMC) parameter evaluation which correlates with full-scale and laboratory mechanical test results. Two special laboratory mechanical test types utilizing SENT and Charpy test concepts for prediction of ductile fracture arrest/propagation in a pipe were developed and included into Gazprom specifications.


Author(s):  
S. Igi ◽  
T. Sakimoto ◽  
J. Kondo ◽  
Y. Hioe ◽  
G. Wilkowski

Three partial gas pipe burst tests were conducted to assess the brittle-to-ductile transition temperature and brittle fracture arrestability of a heavy-walled TMCP line-pipe steel. This steel had a very high Charpy energy (400 J) which is typical of many modern line-pipe steels. In standard pressed-notch DWTT specimen tests this material exhibited abnormal fracture appearance (ductile fracture from the pressed notch prior to brittle fracture starting) that occurs with many high Charpy energy steels. Such behavior gives an invalid test by API RP 5L3, which makes the transition temperature difficult to determine. The first burst test was conducted in a manner that is typical of a traditional West Jefferson (partial gas vessel) burst tests. The crack was initiated in the center of the cooled vessel (with a partial air gap), but an unusual result occurred. In this test a ductile fracture just barely started from each crack tip, but one of the endcaps blew off. The pipe rocketed into the wall of a containment building. The opposite endcap impacted the wall of the building and brittle fractures started there with one coming back to the center of the vessel. The implication from this test was that perhaps initiation of the brittle fracture in the base metal gives different results than if the initial crack came from a brittle location. The second burst test used a modified West-Jefferson Burst Test procedure. The modification involved cutting a short length of pipe at the center of the vessel and rotating the seam weld to the line of crack propagation. The HAZ of the axial seam weld had a higher dynamic transition temperature. The initiation flaw was across one of the center girth welds so that one side of the initial through-wall crack had the crack tip in the base metal while the other side initiated in the seam weld HAZ. On the base metal side, the crack had about 220 mm of crack growth before reaching steady-state shear area, i.e., the shear area gradually decreased as the fracture speed was increasing. On the other side, a brittle fracture was started in the HAZ as expected, and once it crossed the other central girth weld into the base metal, the fracture immediately transformed to a lower shear area percent. These results along with those from the first burst test suggest that the DWTT specimen should have a brittle weld metal in the starter notch region to ensure the arrestability of the material. The final burst test was at a warmer temperature. There was a short length of crack propagation with higher shear area percent, which quickly turned to ductile fracture and arrested. In addition various modified DWTTs were conducted and results were analyzed using an alternative brittle fracture arrest criterion to predict pipe brittle fracture arrestability.


Author(s):  
G. Wilkowski ◽  
D. Rudland ◽  
D. Rider ◽  
P. Mincer ◽  
W. Sloterdijk

This paper presents a procedure to determine the lowest temperature that a ductile fracture will initiate in old (or new) pipe that behaves in a brittle manner (by Charpy testing). Over the last decade, much work has been done to assess constraint effects on the crack-driving force for specimens and cracks in pipes. The material’s transition temperature where the fracture process changes from ductile tearing to cleavage fracture at crack initiation is affected by the constraint conditions, but is a material property that cannot be determined analytically. This paper presents a methodology to account for constraint effects to predict the lowest temperature where ductile fracture initiation occurs and relates that temperature back to Charpy impact data for X60 and lower grades, particularly for older vintage linepipe materials. The method involves a series of transition temperature shifts to account for thickness effects, strain-rate effects, and constraint effects to give a master curve of transition temperatures from Charpy data to through-wall-cracked or surface-cracked pipes (with various surface-crack depth values) under quasi-static loading. These transition temperature shifts were based on hundreds of pipe tests and thousands of specimen tests over several decades of work by numerous investigators. Conducting tests on 1927 and 1948 vintage line-pipe steels subsequently validated this method. In addition, data were developed on the 1927 vintage pipe material to assess the effect of the bluntness of a corrosion flaw on the lowest temperature where ductile fracture will still occur under quasi-static loading. An addition transition temperature shift occurs as a function of the bluntness of the flaw.


Author(s):  
Israel Marines-Garcia ◽  
Jorge A. Aldana-Díaz ◽  
Philippe P. Darcis ◽  
Hector M. Quintanilla

Offshore pipelines projects, installed by reel-laying operations, are gaining momentum due to the increasing worldwide capacity of Reel Lay Vessels. It is well known that reel-laying installation causes repeated plastic straining (cyclic deformation) and, as a consequence, cyclic strain and ageing test is usually required for qualifying line pipe materials for such installation method. This qualification is typically named reeling simulation. Reeling simulations can be made via full or small scale. In practice, full scale qualification lead time and full scale reeling simulation machines availability could be a constraint, thus, small scale reeling simulation is usually the best alternative. However, the similitude of small scale versus full scale simulations could be questioned. On this basis, an extensive study was carried-out considering tensile, toughness and sour testing, in order to evaluate the material response after reeling simulation, in order to clarify if the line pipe material will behave similarly regardless the straining method (small scale or full scale). Different small scale samples configuration for straining were tested, depending on the posterior mechanical or sour test, and two different full scale reeling simulation machines were used for plain pipes straining. Five seamless plain pipes, X65 line pipe were used for this study, with 3 (three) different outer diameters of 10.75″, 11.67″ & 16″ (273 mm, 296 mm & 406 mm). The current paper will present the main mechanical results of these materials after strain and ageing condition, comparing full and small scale straining methods.


Sign in / Sign up

Export Citation Format

Share Document