Repair of Leaks in Thin Wall High Pressure Pipelines Using Composite Reinforcing Technologies

Author(s):  
Chris Alexander ◽  
Salem Talbi ◽  
Richard Kania ◽  
Jon Rickert

Abstract A study was conducted to evaluate two composite repair technologies used to reinforce severe corrosion and thru-wall leaking defects in thin-walled pipe materials; conditions where the welding of conventional Type B steel sleeves cannot be conducted. This program involved the reinforcement of simulated 85% corrosion defects in 6.625-inch × 0.157-inch, Grade X52 pipe materials subjected to cyclic pressure and burst testing. The test matrix also included repaired pipe samples with thru-wall defects that were pressurized using nitrogen gas and buried for 90 days. The program was comprehensive in that it evaluated the following elements involving a total of 81 reinforced corrosion defects. • Corrosion features with a depth of 85% of the pipe’s nominal wall thickness in thin-walled pipe material (i.e., 0.157 inches, or 4 mm). • Thru-wall defects having a diameter of 0.125 inches (3 mm). • Repairs made with leaking defects having 100 psig (690 kPa) internal pressure. • Strain gage measurement made in non-leaking 85% corrosion defects; it should be noted that the remaining “15%” ligament was 0.024 inches (0.6 mm); to the author’s knowledge, no high-pressure testing has ever been conducted on such a thin remaining wall. • Long-term 90-day test that included pressurization with nitrogen gas, followed by relatively aggressive pressure cycling up to 80% SMYS followed by burst testing. This is the first comprehensive study conducted by a major transmission pipeline operator evaluating the performance of competing composite technologies used to reinforce severe corrosion features with thru-wall defects. The reinforcement of leaks has not been accepted by regulatory bodies such as the Canadian Energy Regulator (CER), or the U.S. Pipeline and Hazardous Materials Safety Administration (PHMSA). A goal of the current study is to validate composite repair technologies as a precursor to regulatory approval. The results of this study indicate that viable composite repair technologies exist with capabilities to reinforce leaks in pipelines that experience operating conditions typical for gas transmission systems (i.e., minimal pressure cycling).

2011 ◽  
Vol 368-373 ◽  
pp. 930-933
Author(s):  
Wei Hou ◽  
Shuan Hai He ◽  
Cui Juan Wang ◽  
Gang Zhang

Being aimed to deformation problem of pre-stressed concrete thin-walled multi-room box girders exposed to co-action of fire and load, on the basis of enthalpy conduction model and thermo-mechanics parameters, the finite element procedure was applied to analyze the deformation of three spans pre-stressed concrete thin-walled multi-room box girders exposed to co-action of fire and load. In conclusion, the deflection is obvious under action of the variation width and fire load model.


1963 ◽  
Vol 30 (1) ◽  
pp. 134-135
Author(s):  
E. A. Utecht

Curves are presented which give stress intensification factors for curved, thin-walled circular tubes under various combinations of in-plane and out-of-plane bending moments.


Author(s):  
N U Dar ◽  
E M Qureshi ◽  
A M Malik ◽  
M M I Hammouda ◽  
R A Azeem

In recent years, the demand for resilient welded structures with excellent in-service load-bearing capacity has been growing rapidly. The operating conditions (thermal and/or structural loads) are becoming more stringent, putting immense pressure on welding engineers to secure excellent quality welded structures. The local, non-uniform heating and subsequent cooling during the welding processes cause complex thermal stress—strain fields to develop, which finally leads to residual stresses, distortions, and their adverse consequences. Residual stresses are of prime concern to industries producing weld-integrated structures around the globe because of their obvious potential to cause dimensional instability in welded structures, and contribute to premature fracture/failure along with significant reduction in fatigue strength and in-service performance of welded structures. Arc welding with single or multiple weld runs is an appropriate and cost-effective joining method to produce high-strength structures in these industries. Multi-field interaction in arc welding makes it a complex manufacturing process. A number of geometric and process parameters contribute significant stress levels in arc-welded structures. In the present analysis, parametric studies have been conducted for the effects of a critical geometric parameter (i.e. tack weld) on the corresponding residual stress fields in circumferentially welded thin-walled cylinders. Tack weld offers considerable resistance to the shrinkage, and the orientation and size of tacks can altogether alter stress patterns within the weldments. Hence, a critical analysis for the effects of tack weld orientation is desirable.


2021 ◽  
Author(s):  
Chris Alexander ◽  
Richard Kania ◽  
Salem Talbi ◽  
Jon Rickert
Keyword(s):  

2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Philip L. Andrew ◽  
Harika S. Kahveci

Avoiding aerodynamic separation and excessive shock losses in gas turbine turbomachinery components can reduce fuel usage and thus reduce operating cost. In order to achieve this, blading designs should be made robust to a wide range of operating conditions. Consequently, a design tool is needed—one that can be executed quickly for each of many operating conditions and on each of several design sections, which will accurately capture loss, turning, and loading. This paper presents the validation of a boundary layer code, MISES, versus experimental data from a 2D linear cascade approximating the performance of a moderately loaded mid-pitch section from a modern aircraft high-pressure turbine. The validation versus measured loading, turning, and total pressure loss is presented for a range of exit Mach numbers from ≈0.5 to 1.2 and across a range of incidence from −10 deg to +14.5 deg relative to design incidence.


2010 ◽  
Vol 20 (7) ◽  
pp. 1206-1218 ◽  
Author(s):  
W. Miranda ◽  
G. Takiguchi ◽  
T. Shimabukuro ◽  
L. McLennan ◽  
C. Agajanian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document