Numerical and Experimental Investigation of Nanoscale Heat Transfer Between a Flying Head Over a Rotating Disk

Author(s):  
Siddhesh V. Sakhalkar ◽  
Qilong Cheng ◽  
David B. Bogy

Abstract With the minimum fly height less than 10 nm in contemporary hard-disk drives, understanding nanoscale heat transfer at the head-disk interface (HDI) is crucial for developing reliable head and media designs. While flying at near-contact, the fly height and spacing dependent nanoscale heat transfer are significantly affected by interfacial forces in the HDI (such as adhesion force, contact force etc.). Moreover, with the emergence of technologies such as Heat-Assisted Magnetic Recording and Microwave-Assisted Magnetic Recording, head failure due to overheating has become an increasing concern. In this study, we present a numerical model to simulate the head temperature profile and the head-disk spacing for a flying head over a spinning disk and compare our results with touchdown experiments performed with a magnetic recording head flying over a rotating Al-Mg disk. In order to accurately predict the fly height and heat transfer at near-contact, we incorporate asperity based adhesion and contact models, air & phonon conduction heat transfer, friction heating and the effect of disk temperature rise in our model. Our results show that the incorporation of adhesion force between the head and the disk causes a reduction in the fly height, leading to a smaller touchdown power than the simulation without adhesion force.

Author(s):  
Siddhesh V. Sakhalkar ◽  
Qilong Cheng ◽  
Yuan Ma ◽  
Amin Ghafari ◽  
David B. Bogy

Abstract With minimum fly height of less than 10 nm in contemporary hard-disk drives, understanding nanoscale heat transfer at the head-media interface is crucial for developing reliable head and media designs. Particularly, with the emergence of Heat-Assisted Magnetic Recording (HAMR) and Microwave-Assisted Magnetic Recording (MAMR), head failure due to overheating has become an increasing concern. There is a need to develop a methodology to use theoretical curves for spacing-dependent nanoscale heat transfer coefficient to predict head and media temperatures in actual hard disk drives. In this study, we present a numerical model to simulate the head and media temperature profiles during static touchdown and compare our results with experiments performed with a magnetic head on a silicon wafer. As the head approaches touchdown with increasing TFC power, the phonon conduction heat transfer coefficient between the head and the substrate increases exponentially, causing a drop in the head temperature vs TFC power curve. Our model shows that the introduction of van der Waals forces between the head and the substrate causes a steeper drop in the head temperature curve and ensures a good quantitative match with experimental results.


Author(s):  
Haoyu Wu ◽  
David Bogy

The near field transducer (NFT) overheating problem is an issue the hard disk drive (HDD) industry has faced since heat-assisted magnetic recording (HAMR) technology was first introduced. In this paper, a numerical study of the head disk interface (HDI) is performed to predict the significance of the nanoscale heat transfer due to the back heating from the disk. A steady-state heat transfer problem is first solved to get the disk temperature profile. Then an iterative simulation of the entire HDI system is performed. It shows that the heat transfer coefficient in the HDI increases to about 6:49 × 106 W/(m2K) when the clearance is 0:83 nm. It also shows that in the free space laser scenario, the simulation result is close to the experimental result.


Author(s):  
Haoyu Wu ◽  
David Bogy

Understanding the heat transfer in the head disk interface (HDI) in the heat assisted magnetic recording (HAMR) is important. In this paper, we report on a series of experiments to study the heat transfer in the HDI using the perpendicular magnetic recording (PMR) heads and media. The temperature increase of the embedded contact sensor (ECS) and the thermal fly-height control (TFC) heater was compared in the fly setup and non-fly setup. A series of simulations were performed to explain the results. We show that the design of the air bearing surface can significantly affect the pressure distribution in the read/write transducer area, and thereby affect the convective heat transfer coefficient.


2016 ◽  
Vol 108 (9) ◽  
pp. 093106 ◽  
Author(s):  
Haoyu Wu ◽  
Shaomin Xiong ◽  
Sripathi Canchi ◽  
Erhard Schreck ◽  
David Bogy

Author(s):  
Qilong Cheng ◽  
Yuan Ma ◽  
David Bogy

Abstract In hard disk drives (HDD), the head-media spacing has decreased to less than 10 nm. Across this nanoscale gap, the heat transfer between the head and media may affect the air-bearing design, lubricant transfer and contact issues. Thus, understanding the heat transfer mechanism is very important to magnetic recording, especially for Heat Assisted Magnetic Recording (HAMR). In this paper, the heat transfer between a head and a static media is studied. In particular, the effect of humidity on the nanoscale heat transfer between a head and a static media is studied experimentally. From the transient and steady data of the experiments, it is proposed that the dynamic response of head protrusion is faster than heat dissipation. Also, a layer of water is assumed to form between the head and the media under high humidity. The water-layer affects the spacing and the heat transfer coefficient across the interface. In the near-contact regime, namely when the clearance is less than 2 nm or so, the protrusion interacts with the water-layer on the media, resulting in a lower rate of change of cooling.


Sign in / Sign up

Export Citation Format

Share Document