Crash Energy Management Design for the LACMTA HR4000 Heavy Rail Vehicle

Author(s):  
Anbo Wang ◽  
Yanwen Liu ◽  
Xiaofang Liu ◽  
Steven W. Kirkpatrick ◽  
Virginia Phan ◽  
...  

Abstract The LACMTA HR4000 heavy rail vehicle was designed to meet the ASME RT-2 Safety Standard for Structural Requirements for Heavy Rail Transit Vehicles. The crash energy management (CEM) structures designed for this vehicle also provide unique performance characteristics through use of a staged combination of CEM technologies. The resulting design, using easily replaceable components, provides reduced repair costs for lower speed collisions, minimizes the number of cars damaged during a collision, while exceeding the RT-2 standard for safety to the operator. None of the CEM technologies used are novel, but their integrated design provides a unique performance in heavy rail vehicle design. This paper provides an overview of the CEM design development. First, a general description of the CEM system function is provided, including the various CEM technologies used and how they interact during a collision. Then the 1-dimensional and 3-dimensional nonlinear dynamic models developed for optimizing the design are discussed. The CEM test program performed to demonstrate the system function and validate the modeling is described. Finally, the performance of the CEM system in train-to-train collision analyses is presented. Underframe testing was conducted for validation of the simulations.

2021 ◽  
Author(s):  
Mohammad Adnan Naeem.

This project analyses the energy consumption of 44 Gerrard St. East. This site is primarily used as the Ryerson University Theatre School and it consists of four classrooms, seventeen offices, six studios, and two theatre auditoriums. Since it is a three-storey building, plus a basement, thus, the energy level for this building is supposed to be moderate. However, because it is an old structure, constructed back in the early 1940s, this building seemingly has considerable energy consumption. The main objective of this energy assessment is to reduce the building load. This goal can be achieved by simplifying and controlling certain parameters that directly and indirectly involve energy consumption. For example, indoor temperature and relative humidity can be maintained at low level in winter and at high level in summer. In addition, monitoring heat loss, heat gain, infiltrations through the building surrounds, and the level of illumination for various types of lights helps to reduce overall energy consumption. Several other factors such as operating costs, maintenance costs, and repair costs influence the energy management of the site. With the help of energy management software, eQUEST, the structure, outlook of all the walls, windows, roof and the type of HVAC system can be developed for analysis. Through eQUEST, various tasks such as heat transfer involvement, energy consumption load calculations and load balancing in comparison with energy saving guidelines will be discussed in detail.


2018 ◽  
Vol 28 (09) ◽  
pp. 1850113 ◽  
Author(s):  
Maysam Fathizadeh ◽  
Sajjad Taghvaei ◽  
Hossein Mohammadi

Human walking is an action with low energy consumption. Passive walking models (PWMs) can present this intrinsic characteristic. Simplicity in the biped helps to decrease the energy loss of the system. On the other hand, sufficient parts should be considered to increase the similarity of the model’s behavior to the original action. In this paper, the dynamic model for passive walking biped with unidirectional fixed flat soles of the feet is presented, which consists of two inverted pendulums with L-shaped bodies. This model can capture the effects of sole foot in walking. By adding the sole foot, the number of phases of a gait increases to two. The nonlinear dynamic models for each phase and the transition rules are determined, and the stable and unstable periodic motions are calculated. The stability situations are obtained for different conditions of walking. Finally, the bifurcation diagrams are presented for studying the effects of the sole foot. Poincaré section, Lyapunov exponents, and bifurcation diagrams are used to analyze stability and chaotic behavior. Simulation results indicate that the sole foot has such a significant impression on the dynamic behavior of the system that it should be considered in the simple PWMs.


Author(s):  
Mehran Bidarvatan ◽  
Mahdi Shahbakhti

Hybrid electric vehicle (HEV) energy management strategies usually ignore the effects from dynamics of internal combustion engines (ICEs). They usually rely on steady-state maps to determine the required ICE torque and energy conversion efficiency. It is important to investigate how ignoring these dynamics influences energy consumption in HEVs. This shortcoming is addressed in this paper by studying effects of engine and clutch dynamics on a parallel HEV control strategy for torque split. To this end, a detailed HEV model including clutch and ICE dynamic models is utilized in this study. Transient and steady-state experiments are used to verify the fidelity of the dynamic ICE model. The HEV model is used as a testbed to implement the torque split control strategy. Based on the simulation results, the ICE and clutch dynamics in the HEV can degrade the control strategy performance during the vehicle transient periods of operation by around 8% in urban dynamometer driving schedule (UDDS) drive cycle. Conventional torque split control strategies in HEVs often overlook this fuel penalty. A new model predictive torque split control strategy is designed that incorporates effects of the studied powertrain dynamics. Results show that the new energy management control strategy can improve the HEV total energy consumption by more than 4% for UDDS drive cycle.


Author(s):  
Mortadha Graa ◽  
Mohamed Nejlaoui ◽  
Ajmi Houidi ◽  
Zouhaier Affi ◽  
Lotfi Romdhane

In this paper, an analytical reduced dynamic model of a rail vehicle system is developed. This model considers only 38 degrees of freedom of the rail vehicle system. This reduced model can predict the dynamic behaviour of the rail vehicle while being simpler than existing dynamic models. The developed model is validated using experimental results found in the bibliography and its results are compared with existing more complex models from the literature. The developed model is used for the passenger comfort evaluation, which is based on the value of the weighted root mean square acceleration according to the ISO 2631 standard. Several parameters of the system, i.e., passenger position, loading of the railway vehicle and its speed, and their effect on the passenger comfort are investigated. It was shown that the level of comfort is mostly affected by the speed of the railway vehicle and the position of the seat. The load, however, did not have a significant effect on the level of comfort of the passenger.


2007 ◽  
Vol 18-19 ◽  
pp. 563-568
Author(s):  
O.E. Ekenta ◽  
B.U. Anyata

This work focuses on the conception and formulation of appropriate filtration models for use by water treatment professionals for design, development and management of deep-bed (depth) filters. Performance and optimization studies were carried out using data (turbidity, filtration rate, head loss) acquired from pilot filter test runs. The curves developed from these studies were utilized for the formulation of steady-state and hydro-dynamic models of depth filtration. An effluent quality model was developed, relating depth of flow in filter bed with effluent turbidity. This model was verified and validated. The depths obtained are in good agreement with standard values from literature.


2021 ◽  
pp. 87-106
Author(s):  
Chris Patience ◽  
Ewan Jones

Sign in / Sign up

Export Citation Format

Share Document