A Prediction Method for Thermal Conductivity and Electric Conductivity of Nanofluids Based on Particles Aggregation Theory

Author(s):  
Guo-Liang Ding ◽  
Wei-Ting Jiang ◽  
Yi-Feng Gao

Nanoparticles in nanofluids are in the form of nanoparticle clusters caused by aggregation. In order to calculate the thermal and electric conductivities of the nanofluids, the growth process and three-dimensional space structure of the nanoparticle cluster in the host fluid was simulated, and then the thermal and electric conductivities of the cluster were calculated with the resistance network method. The thermal and electric conductivities of the nanofluid were calculated based on the simulated thermal and electric conductivities of nanoparticle clusters, the volume fraction of nanoparticle clusters to the nanofluid as well as the liquid molecule adsorption layer of the nanoparticle. The simulation method was validated by experimental data.

2012 ◽  
Vol 614-615 ◽  
pp. 529-535 ◽  
Author(s):  
Wei Ting Jiang

Nanoparticles in nanofluids are in the form of nanoparticle clusters caused by aggregation. In order to calculate the thermal and electric conductivity of the nanofluids, the growth process and three-dimensional space structure of the nanoparticle cluster in the host fluid is simulated, and then the thermal and electric conductivity of the cluster are calculated with the resistance network method. The thermal and electric conductivity of the nanofluid are calculated based on the simulated thermal and electric conductivity of nanoparticle clusters, the volume fraction of nanoparticle clusters to the nanofluid as well as the liquid molecule adsorption layer of the nanoparticle. The simulation method is validated by experimental data.


Author(s):  
M.J. Richard

Pressing technological problems have created a growing interest in the development of dynamic models for the digital simulation of multibody systems. This paper describes a new approach to the problem of motion prediction. An extension of the “vector-network” method to rigid body systems in three-dimensional space is introduced. The entire procedure is a basic application of concepts of graph theory in which laws of vector dynamics are combined. The analytical procedure was successfully implemented within a general-purpose digital simulation program since, from a minimal definition of the mechanism, it will automatically predict the behavior of the system as output, thereby giving the impression that the equations governing the motion of the mechanical system have been completely formulated and solved by the computer. Simulations of the response of a rail vehicle which demonstrate the validity, applicability and self-formulating aspect of the automated model are provided.


1979 ◽  
Vol 101 (3) ◽  
pp. 299-303 ◽  
Author(s):  
R. M. Christensen

The effective moduli are derived for a composite material containing platelet-type inclusions. The platelets are taken to be randomly oriented in three-dimensional space and to have so large a diameter-to-thickness ratio that edge effects can be neglected. The effective moduli that are derived reduce to known results in the special case of a dilute suspension. Comparisons are made with the corresponding type of composite medium that involves randomly oriented fibers. For the same volume fraction of reinforcing phase, the platelet case provides a stiffening effect about three times greater than the fiber case.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pai-Yi Hsiao ◽  
Wei-Yei Chen

AbstractA general ejection theory of polymer is developed in a two- and three-dimensional space. A polymer is confined initially in a cavity and ejects spontaneously to the outer space through a nanopore channel without the help of any external stimulus. A reflective wall boundary is set at the pore entrance to prevent the falling of the head monomer of chain into the cavity. Three stages are distinguished in a process: (1) an entering stage, in which the head monomer enters the pore to search for a way to traverse the pore channel, (2) a main ejection stage, in which the chain body is transported from the cavity to the outer space, (3) a leaving stage, in which the tail monomer passes through and leaves the pore channel. Depending on the number of the monomers remaining in the cavity, the main ejection stage can be divided into the confined and the non-confined stages. The non-confined stage can be further split into the thermal escape and the entropic pulling stages. The Onsager’s variational principle is applied to derive the kinetics equation of ejection. The escape time is calculated from the corresponding Kramers’ escape problem. Extensive molecular dynamics simulations are then performed in a quasi two-dimensional space to verify the theory. The variation of the ejection speed is carefully examined. The decreasing behavior of the number of monomers in the cavity is studied in details. The scaling properties of the spending time at each processing stage are investigated systematically by varying the chain length, the cavity diameter, and the initial volume fraction of chain. The results of simulation support firmly the predictions of the theory, cross-checked in the studies of various topics. In combining with the previous investigations in the three-dimensional space, the generalized theory is very robust, able to explain the two seemly different phenomena, polymer ejection and polymer translocation, together under the same theoretical framework in the two space dimensions.


1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


2019 ◽  
Author(s):  
Jumpei Morimoto ◽  
Yasuhiro Fukuda ◽  
Takumu Watanabe ◽  
Daisuke Kuroda ◽  
Kouhei Tsumoto ◽  
...  

<div> <div> <div> <p>“Peptoids” was proposed, over decades ago, as a term describing analogs of peptides that exhibit better physicochemical and pharmacokinetic properties than peptides. Oligo-(N-substituted glycines) (oligo-NSG) was previously proposed as a peptoid due to its high proteolytic resistance and membrane permeability. However, oligo-NSG is conformationally flexible and is difficult to achieve a defined shape in water. This conformational flexibility is severely limiting biological application of oligo-NSG. Here, we propose oligo-(N-substituted alanines) (oligo-NSA) as a new peptoid that forms a defined shape in water. A synthetic method established in this study enabled the first isolation and conformational study of optically pure oligo-NSA. Computational simulations, crystallographic studies and spectroscopic analysis demonstrated the well-defined extended shape of oligo-NSA realized by backbone steric effects. The new class of peptoid achieves the constrained conformation without any assistance of N-substituents and serves as an ideal scaffold for displaying functional groups in well-defined three-dimensional space, which leads to effective biomolecular recognition. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document