Molecular Dynamics Simulations of Interfacial Heat and Mass Transfer at Nanostructured Surface

Author(s):  
Gyoko Nagayama ◽  
Masako Kawagoe ◽  
Takaharu Tsuruta

The nanoscale heat and mass transport phenomena play important roles on the applications of nanotechnologies with great attention to its differences from the continuum mechanics. In this paper, the breakdown of the continuum assumption for nanoscale flows has been verified based on the molecular dynamics simulations and the heat transfer mechanism at the nanostructured solid-liquid interface in the nanochannels is studied from the microscopic point of view. Simple Lennard-Jones (LJ) fluids are simulated for thermal energy transfer in a nanochannel using nonequilibrium molecular dynamics techniques. Multi-layers of platinum atoms are utilized to simulate the solid walls with arranged nanostructures and argon atoms are employed as the LJ fluid. The results show that the interface structure (i.e. the solid-like structure formed by the adsorption layers of liquid molecules) between solid and liquid are affected by the nanostructures. It is found that the hydrodynamic resistance and thermal resistance dependents on the surface wettability and for the nanoscale heat and fluid flows, the interface resistance cannot be neglected but can be reduced by the nanostructures. For the hydrodynamic boundary condition at the solid-liquid interface, the no-slip boundary condition holds good at the super-hydrophilic surface with large hydrodynamic resistance. However, apparent slip is observed at the low hydrodynamic resistance surface when the driving force overcomes the interfacial resistance. For the thermal boundary condition, it is found that the thermal resistance at the interface depends on the interface wettability and the hydrophilic surface has lower thermal resistance than that of the hydrophobic surfaces. The interface thermal resistance decreases at the nanostructed surface and significant heat transfer enhancement has been achieved at the hydrophilic nanostructured surfaces. Although the surface with nanostrutures has larger surface area than the flat surface, the rate of heat flux increase caused by the nanostructures is remarkable.

2013 ◽  
Vol 291-294 ◽  
pp. 1999-2003 ◽  
Author(s):  
Zhi Hai Kou ◽  
Min Li Bai ◽  
Guo Chang Zhao

Simulation of nanoscale thermo-fluidic transport has attracted considerable attention in recent years owing to rapid advances in nanoscience and nanotechnology. The three- dimensional molecular dynamics simulations are performed for the system of a liquid layer between two parallel solid walls at different wall temperatures. The solid-solid interaction is modeled by the embedded atom method. The heat flux through the solid-liquid interface is calculated by Green-Kubo method. The effects of interface wettability and wall temperature on the interfacial thermal resistance are also analyzed. It is found that there exist the relatively immobile quasi-crystalline interfacial layers close to each solid wall surface with higher number density and thus higher local thermal conductivity than the corresponding liquid phase. The interfacial thermal resistance length is overestimated by 8.72% to 19.05% for the solid-solid interaction modeled by the Lennard-Jones potential, and underestimated based on heat fluxes calculated by Fourier equation.


2001 ◽  
Vol 124 (2) ◽  
pp. 265-274 ◽  
Author(s):  
Xinwei Wang ◽  
Xianfan Xu

In this work, heat transfer and phase change of an argon crystal irradiated by a picosecond pulsed laser are investigated using molecular dynamics simulations. The result reveals no clear interface when phase change occurs, but a transition region where the crystal structure and the liquid structure co-exist. Superheating is observed during the melting and vaporizing processes. The solid-liquid interface is found to move with a velocity of hundreds of meters per second, and the vapor is ejected from the surface with a vapor front velocity of hundreds of meters per second.


Author(s):  
E. A. T. van den Akker ◽  
A. J. H. Frijns ◽  
A. A. van Steenhoven ◽  
P. A. J. Hilbers

In simulations of micro channel cooling, the heat exchange from fluid to channel wall is an important aspect. Hence the heat exchange should be included in the model. Although numerically very expensive, it can be done by using a molecular wall. Numerically cheap implementations of a wall are the reflective wall and the thermal wall, and the combination of both, the diffusive-specular wall. In this paper we introduce the concept of a vibrating reflective wall as a boundary condition for molecular dynamics simulations. It is shown that the heat transfer with the vibrating reflective wall is the same as with a molecular wall, and that computation time is reduced greatly. As a competitive model, the diffusive-specular boundary condition is analyzed; it is shown that a good choice of parameters can give similar results in the same computation time, but the choice of parameters is not known a priori, therefore the vibrating reflective wall boundary condition is preferable.


Sign in / Sign up

Export Citation Format

Share Document