Proper Cell Dimension and Number of Particles Per Cell for DSMC

Author(s):  
Z. X. Sun ◽  
Y. L. He ◽  
W. Q. Tao

Different opinions still exist on some basic principles of DSMC method, such as the proper grid dimension and the proper number of particles in a cell. In this paper DSMC simulation of Poiseuille flow is made to evaluate the dependence of simulation results on cell dimension and number of particles per cell. In the simulation process a self adapting block structured grid system is employed to make sure that the number of particles per cell is constant. The simulation covers both slip flow regime and transition flow regime and each regime covers both high pressure and low pressure. Our simulation results indicate that the number of particles per cell and scaling factor exert little influence on simulation result for both slip flow and transition flow when the number of particles per cell surpasses 5, but the dimension of cell influences the accuracy of result obviously. The error caused by cell dimension decreases as the diminish of cell dimension. It is concluded that in the DSMC method it is necessary to make sure that the cell is less than 1/2 of molecular mean free path.

2013 ◽  
Vol 135 (10) ◽  
Author(s):  
Ali Amiri-Jaghargh ◽  
Ehsan Roohi ◽  
Hamid Niazmand ◽  
Stefan Stefanov

Direct simulation Monte Carlo (DSMC) method in low Knudsen rarefied flows at micro/nanoscales remains a big challenge for researchers due to large computational requirements. In this article, the application of the simplified Bernoulli-trials (SBT)/dual grid collision scheme is extended for solving low Knudsen/low speed and low Knudsen/high gradient rarefied micro/nanoflows. The main advantage of the SBT algorithm is to provide accurate calculations using much smaller number of particles per cell, i.e., 〈N〉 ≈ 2, which is quite beneficial for near continuum DSMC simulations where the requirement of fine meshes faces the simulation with serious memory restrictions. Comparing the results of the SBT/dual grid scheme with the no time counter (NTC) scheme and majorant frequency scheme (MFS), it is shown that the SBT/dual grid scheme could successfully predict the thermal pattern and hydrodynamics field as well as surface parameters such as velocity slip, temperature jump and wall heat fluxes. Therefore, we present SBT/dual grid algorithm as a suitable alternative of the standard collision schemes in the DSMC method for typical micro/nanoflows solution. Nonlinear flux-corrected transport (FCT) algorithm is also employed as a filter to extract the smooth solution from the noisy DSMC calculation for low speed/low Knudsen number DSMC calculations.


2015 ◽  
Vol 7 (2) ◽  
pp. 245-266 ◽  
Author(s):  
Songze Chen ◽  
Kun Xu ◽  
Qingdong Cai

AbstractThe Ellipsoidal Statistical model (ES-model) and the Shakhov model (Smodel) were constructed to correct the Prandtl number of the original BGK model through the modification of stress and heat flux. With the introduction of a new parameter to combine the ES-model and S-model, a generalized kinetic model can be developed. This new model can give the correct Navier-Stokes equations in the continuum flow regime. Through the adjustment of the new parameter, it provides abundant dynamic effect beyond the ES-model and S-model. Changing the free parameter, the physical performance of the new model has been tested numerically. The unified gas kinetic scheme (UGKS) is employed for the study of the new model. In transition flow regime, many physical problems, i.e., the shock structure and micro-flows, have been studied using the generalized model. With a careful choice of the free parameter, good results can be achieved for most test cases. Due to the property of the Boltzmann collision integral, the new parameter in the generalized kinetic model cannot be fully determined. It depends on the specific problem. Generally speaking, the Smodel predicts more accurate numerical solutions in most test cases presented in this paper than the ES-model, while ES-model performs better in the cases where the flow is mostly driven by temperature gradient, such as a channel flow with large boundary temperature variation at high Knudsen number.


2012 ◽  
Vol 46 (2) ◽  
pp. 138-147 ◽  
Author(s):  
J. A. Hubbard ◽  
J. E. Brockmann ◽  
J. Dellinger ◽  
D. A. Lucero ◽  
A. L. Sanchez ◽  
...  

2017 ◽  
Vol 139 (7) ◽  
Author(s):  
Carla Cotas ◽  
Bruno Branco ◽  
Dariusz Asendrych ◽  
Fernando Garcia ◽  
Pedro Faia ◽  
...  

Eucalyptus and Pine suspensions flow in a pipe was studied experimentally and numerically. Pressure drop was measured for different mean inlet flow velocities. Electrical impedance tomography (EIT), was used to evaluate the prevailing flow regime. Fibers concentration distribution in the pipe cross section and plug evolution were inferred from EIT tomographic images. A modified low-Reynolds-number k–ε turbulence model was applied to simulate the flow of pulp suspensions. The accuracy of the computational fluid dynamics (CFD) predictions was significantly reduced when data in plug regime was simulated. The CFD model applied was initially developed to simulate the flow of Eucalyptus and Pine suspensions in fully turbulent flow regime. Using this model to simulate data in the plug regime leads to an excessive attenuation of turbulence which leads to lower values of pressure drop than the experimental ones. For transition flow regime, the CFD model could be applied successfully to simulate the flow data, similar to what happens for the turbulent regime.


1959 ◽  
Vol 5 (3) ◽  
pp. 481-490 ◽  
Author(s):  
V. C. Liu

A physical theory is proposed for the skin friction on a flat plate at zero incidence in the transition flow regime, i.e. in the flow of a moderately rarefied gas. The ratio of the molecular mean free path to the characteristic size of the plate is assumed of order unity or larger. A general formula for the perturbation to the well-known friction of the free-molecule theory is given. This perturbation is attributed to the intermolecular collisions which are neglected on the basis of the free-molecule hypothesis. The expected rate of collisions are calculated for rigid spheres, using the classical kinetic theory.Although this is intended as an approximate theory, the theoretical results check surprisingly well with the limited experimental data that are available. The present theory shows that the ratio of the Reynolds number to the Mach number squared is the governing parameter for determining the intermolecular collision effect on skin friction in the transition flow regime.


Sign in / Sign up

Export Citation Format

Share Document