Experimental Investigation of Ultrasonic Frequency Effect on an Oscillating Heat Pipe

Author(s):  
Nannan Zhao ◽  
Benwei Fu ◽  
Hongbin Ma ◽  
Fengmin Su

The heat transport capability in an oscillating heat pipe (OHP) significantly depends on the oscillating frequency. An external frequency directly affects the natural frequency in the system. In this investigation, the ultrasound sound effect on the heat transport capability in an OHP was conducted with focus on the ultrasonic frequency effect on the oscillating motion and heat transfer capacity in an OHP. The ultrasonic sound was applied to the evaporating section of the OHP by using the electrically-controlled piezoelectric ceramics. The heat pipe was tested with or without the ultrasonic sound with different frequencies. In addition, the effects of operating temperature, heat load from 25 W to 150 W were investigated. The experimental results demonstrate that the heat transfer capacity enhancement of the OHP depends on the frequency of the ultrasound field, and there exists an optimum combination of the frequencies which will lead to the largest enhancement of the heat transfer capacity of the OHP.

2013 ◽  
Vol 135 (7) ◽  
Author(s):  
Nannan Zhao ◽  
Dianli Zhao ◽  
H. B. Ma

This paper investigates the ultrasonic sound effect on oscillating motion and heat transfer in an oscillating heat pipe (OHP). The ultrasonic sound produced by electrically controlled piezoelectric ceramics is used to generate and maintain the oscillating motion and thereby enhance heat transfer. The results demonstrate that when an ultrasonic sound with a total electric power of 4.48 mW is added, the input power needed to start the oscillating motion can be reduced from 30 W to 18 W and the effective thermal conductivity is increased from 672.8 W/mK to 1254.7 W/mK.


Author(s):  
Nannan Zhao ◽  
Benwei Fu ◽  
Dianli Zhao ◽  
Hongbin Ma

The ultrasonic effect on the oscillating motion and heat transfer in an oscillating heat pipe (OHP) containing acetone was investigated experimentally. The ultrasonic sound was applied to the evaporating section of the OHP by using electrically-controlled piezoelectric ceramics. The ultrasonic sound is used to generate and maintain the oscillating motion, and, thereby, heat transfer is enhanced. The heat pipe was tested with or without the ultrasonic sound. In addition, the effects of heat load, filling ratio, orientation, operating temperature, and input power from 15 W to 200 W were investigated. The experimental results demonstrate that ultrasonic sound can affect the oscillating motions and enhance the heat transfer performance of the acetone OHP. In particular, the application of the ultrasonic sound on an acetone OHP can significantly reduce the thermal resistance of the acetone OHP and enhance the heat transfer performance in a low power input region. The investigation will provide an insight into the oscillating mechanism of the acetone OHP influenced by ultrasonic sound and provide a new way to enhance the heat transfer performance of the OHP.


2014 ◽  
Vol 136 (5) ◽  
Author(s):  
C. D. Smoot ◽  
H. B. Ma

An experimental investigation of a compact, triple-layer oscillating heat pipe (OHP) has been conducted to determine the channel layer effect on the heat transport capability in an OHP. The OHP has dimensions 13 mm thick, 229 mm long, and 76 mm wide embedded with two-independent closed loops forming three layers of channels. The unique design of the investigated OHP can be readily used to explore the channel layering effect on the heat transport capability in the OHP. The experimental results show that the addition of channel layers can increase the total power and at the same time, it can increase the effective thermal conductivity of the OHP. When the OHP switches from one layer of channels to two layers of channels, the highest effective thermal conductivity can be increased from 5760 W/mK to 26,560 W/mK. At the same time, the dryout limit can be increased. With three layers of channels, the OHP investigated herein can transport a power up to 8 kW with a heat flux level of 103 W/cm2 achieving an effective thermal conductivity of 33,170 W/mK.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
K. N. Shukla

An analytical expression for the heat transport capability of micro heat pipe is derived. The vapor continuum limitation has been considered in deriving the heat transport capability of a micro heat pipe. As the micro heat pipe uses sharp-cornered square, triangular, or other polygonal channels that can serve as capillary arteries, its transport capability depends on the capillary limit. It has been shown that the operating limit of the micro heat pipe depends on the vapor continuum limitation, capillary limit, and the gravity.


2006 ◽  
Vol 88 (14) ◽  
pp. 143116 ◽  
Author(s):  
H. B. Ma ◽  
C. Wilson ◽  
B. Borgmeyer ◽  
K. Park ◽  
Q. Yu ◽  
...  

Author(s):  
Hongtao Gao ◽  
Xiangyang Gao ◽  
Hongbin Ma ◽  
Anjun Jiao

An experimental investigation was conducted to determine the microparticle effect on the heat transport capability of an oscillating heat pipe (OHP). The OHP was fabricated from copper tubing with inside diameter of 1.52 mm. The heat pipe consists of the evaporator, adiabatic section, and condenser. When heat load was added to the evaporator of OHP, the strong oscillating motion was generated. Due to the strong oscillation and circulation motions, the heat transport capability of OHP was significantly increased. The experimental results show that there exists an optimum volume ratio of microparticles added into the working fluid. The effects of filling ratio and tilted angle on the heat transport capacity were also conducted.


Sign in / Sign up

Export Citation Format

Share Document