Comparative Analysis of the Process Mechanics in Micro-Electrical Discharge Machining (EDM) and Reverse Micro-EDM

Author(s):  
Sachin Mastud ◽  
Ramesh K. Singh ◽  
Johnson Samuel ◽  
Suhas S. Joshi

The objective of this paper is to study the time-evolution of the process mechanics for micro-electrical discharge machining (MEDM) and reverse-micro-electrical discharge machining (R-MEDM), as a function of key system parameters, viz., voltage, capacitance, and threshold of the spark circuit. Full factorial experiments have been performed to quantify the aforementioned system parameters on the MEDM and R-MEDM processes. The process monitoring voltage and current signals, material erosion rate and the surface roughness values are the machining responses of interest. The voltage and current (V-I) signals reveal information about the material erosion rate and the extent of debris-interference associated with the corresponding process. Analysis of the V-I signals shows that R-MEDM is more stable than MEDM and can therefore be operated at aggressive conditions of capacitance and voltage. R-MEDM also results in higher material erosion rates but the resulting surface has a higher surface roughness value than that generated by MEDM. A debris deposition mechanism is proposed for R-MEDM that suggests debris entrapment and subsequent welding to the machined feature to be the reason for the increased surface roughness.

Micromachines ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1018
Author(s):  
Ziliang Zhu ◽  
Dengji Guo ◽  
Jiao Xu ◽  
Jianjun Lin ◽  
Jianguo Lei ◽  
...  

Titanium-nickel shape memory alloy (SMA) has good biomedical application value as an implant. Alloy corrosion will promote the release of toxic nickel ions and cause allergies and poisoning of cells and tissues. With this background, surface modification of TiNi SMAs using TiC-powder-assisted micro-electrical discharge machining (EDM) was proposed. This aims to explore the effect of the electrical discharge machining (EDM) parameters and TiC powder concentration on the machining properties and surface characteristics of the TiNi SMA. It was found that the material removal rate (MRR), surface roughness, and thickness of the recast layer increased with an increase in the discharge energy. TiC powder’s addition had a positive effect on increasing the electro-discharge frequency and MRR, reducing the surface roughness, and the maximum MRR and the minimum surface roughness occurred at a mixed powder concentration of 5 g/L. Moreover, the recast layer had good adhesion and high hardness due to metallurgical bonding. XRD analysis found that the machined surface contains CuO2, TiO2, and TiC phases, contributing to an increase in the surface microhardness from 258.5 to 438.7 HV, which could be beneficial for wear resistance in biomedical orthodontic applications.


2020 ◽  
Vol 13 (3) ◽  
pp. 219-229
Author(s):  
Baocheng Xie ◽  
Jianguo Liu ◽  
Yongqiu Chen

Background: Micro-Electrical Discharge Machining (EDM) milling is widely used in the processing of complex cavities and micro-three-dimensional structures, which is a more effective processing method for micro-precision parts. Thus, more attention has been paid on the micro-EDM milling. Objective : To meet the increasing requirement of machining quality and machining efficiency of micro- EDM milling, the processing devices and processing methods of micro-EDM milling are being improved continuously. Methods: This paper reviews various current representative patents related to the processing devices and processing methods of micro-EDM milling. Results: Through summarizing a large number of patents about processing devices and processing methods of micro-EDM milling, the main problems of current development, such as the strategy of electrode wear compensation and the development trends of processing devices and processing methods of micro-EDM milling are discussed. Conclusion: The optimization of processing devices and processing methods of micro-EDM milling are conducive to solving the problems of processing efficiency and quality. More relevant patents will be invented in the future.


Author(s):  
Gurpreet Singh ◽  
DR Prajapati ◽  
PS Satsangi

The micro-electrical discharge machining process is hindered by low material removal rate and low surface quality, which bound its capability. The assistance of ultrasonic vibration and magnetic pulling force in micro-electrical discharge machining helps to overcome this limitation and increase the stability of the machining process. In the present research, an attempt has been made on Taguchi based GRA optimization for µEDM assisted with ultrasonic vibration and magnetic pulling force while µEDM of SKD-5 die steel with the tubular copper electrode. The process parameters such as ultrasonic vibration, magnetic pulling force, tool rotation, energy and feed rate have been chosen as process variables. Material removal rate and taper of the feature have been selected as response measures. From the experimental study, it has been found that response output measures have been significantly improved by 18% as compared to non assisted µEDM. The best optimal combination of input parameters for improved performance measures were recorded as machining with ultrasonic vibration (U1), 0.25 kgf of magnetic pulling force (M1), 600 rpm of tool rotation (R2), 3.38 mJ of energy (E3) and 1.5 mm/min of Tool feed rate (F3). The confirmation trail was also carried out for the validation of the results attained by Grey Relational Analysis and confirmed that there is a substantial improvement with both assistance applied simultaneously.


2013 ◽  
Vol 652-654 ◽  
pp. 1157-1162
Author(s):  
Fu Qiang Hu ◽  
Jian Fei Sun ◽  
Jun Qi Wei ◽  
Yong Zhang ◽  
Yan Dong Jia ◽  
...  

This paper researches the material erosion mechanisms of high silicon- aluminum (Si-Al) alloy in micro electrical discharge machining (Micro-EDM). By using Quanta 200F environment scanning electron microscope, the microstructure of Al-50wt%Si alloy by spray forming was observed. And a simplified model of high Si-Al alloy was set up. The Al-50wt%Si alloy was machined by using copper electrode and tungsten electrode respectively. And the differences of surface morphologies and element energy spectrum were compared. The process and the material erosion mechanisms of high Si-Al alloy in Micro-EDM were analyzed in detail. The results may provide theoretical basis for Micro-EDM of high Si-Al alloy.


Sign in / Sign up

Export Citation Format

Share Document