process mechanics
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 15)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Shrikant Shankarrao Pawar ◽  
Tufan Chandra Bera ◽  
Kuldip Singh Sangwan

Abstract The accurate estimation of energy consumption is beneficial to manufacturing enterprises economically as well as to overcome global energy crisis. The present work concentrates on developing an energy consumption model in milling of variable curved geometries where magnitudes and directions of workpiece curvature vary along tool contact path of a component. The current work deals with estimation and analysis of energy consumption in peripheral milling of variable curved surfaces where cutting forces differ along tool contact path in the presence of workpiece curvature. The proposed hybrid model developed in MATLAB involves process mechanics, cutting forces and energy consumption and have modules for idle, auxiliary and cutting power. The proposed model is validated by the experimental work. The model is generic and versatile in nature and is useful for milling of straight, circular and curved surfaces. In addition to it, the influence of workpiece curvature on power consumption has been investigated to realize the variation of power consumption along the tool contact path. The developed model offers a basic platform to understand and characterize the energy consumption for general peripheral milling considering workpiece geometry. The comparison of predicted and measured results indicate that the model is capable to estimate the power consumption accurately. The proposed model will be used by the practitioners to find the optimum cutting conditions to reduce power consumption during the machining of curved geometries; a pragmatic condition but not much researched condition in machining.


Author(s):  
Wolfgang Lortz ◽  
Radu Pavel

Abstract There is considerable interest in the “Industry 4.0 project”. Industry hopes that a general solution of the metal removal problem will be found through the use of highly automated manufacturing data. Scientists hope that the computer will provide better models based on artificial intelligence and machine learning. Initial attempts leveraging existing models did not result in satisfactory results yet — largely because of mathematical, physical and metallurgical reasons. This paper presents a new mathematical-physical model to describe the total process mechanics from volume conservation, to friction, to metal plasticity with self-hardening or softening effects and dynamic phenomena during metal plastic flow. The softening effects are created by high energy corresponding to high strain-rate resulting in high temperatures. Furthermore, the developed equations for strain-rate discontinuities as well as yield shear stress with body forces have an interdependent relationship and lead to plastic deformation with dynamic behavior in the total chip formation zone. This plastic deformation is the only parameter that will not disappear after completing the process. This leads to the opportunity to check the theoretically developed grid deformation and compare it with practical results of the same area. In this publication this new theory will be used to analyze the complex contact and friction conditions between the chip and tool edge of a twist drill during operation. It will be shown that the existing conditions are leading to high wear at the corner edge and flank wear at the tool cutting edge. In addition, the existing temperatures can be estimated and compared with practical measurements, and all these complex and difficult conditions create a helical spiral chip, which could be developed as it will be presented in this paper.


Author(s):  
Shizhao Wang ◽  
Yameng Sun ◽  
Can Sheng ◽  
Zheng Feng ◽  
Rui Li ◽  
...  
Keyword(s):  

2020 ◽  
Vol 143 (5) ◽  
Author(s):  
Mohammed Naziru Issahaq ◽  
Srinivasan Chandrasekar ◽  
Kevin P. Trumble

Abstract Commercial electrical conductor wires are currently produced from aluminum alloys by multi-step deformation processing involving rolling and drawing. These processes typically require 10 to 20 steps of deformation, since the plastic strain or reduction that can be imposed in a single step is limited by material workability and process mechanics. Here, we demonstrate a fundamentally different, single-step approach to produce flat wire aluminum products using machining-based deformation that also ensures adequate material workability in the formed product. Two process routes are proposed: (1) chip formation by free-machining (FM), with a post-machining, light drawing reduction (<20%) to achieve desired finish and (2) constrained chip formation by large strain extrusion machining (LSEM). Using commercially pure aluminum conductor alloys (Al 1100 and EC1350) as representative material systems, we demonstrate key features of the machining-based processing, including (a) single-step processing to achieve flat wire geometries, (b) surface finish (Ra = 0.2 to 1.0 μm) comparable to that of commercial wire products made by drawing/rolling, (c) deformation control independent of wire size, and (d) hardness increases of 50–150% over that of annealed wires, while retaining high electrical conductivity (>56% IACS). The wire microstructure, which can also be varied via the large-strain deformation parameters, is correlated with mechanical and electrical properties. Implications for commercial manufacture of flat wire products are discussed.


Author(s):  
Wolfgang Lortz ◽  
Radu Pavel

Abstract All different production processes have one thing in common: in each case a workpiece with characteristic material behavior, stress, strain, self-hardening and temperature will be produced by a tool with special geometry and individual kinematic conditions, with a wide range of energy in a designed machine tool which is working along programmed lines. For the workpiece material, it is not important from which machine the energy is coming. To be able to predict more accurate values of the production process, it will be necessary to focus more on the complex and difficult process mechanics. The result must have a strong physical base and be in good agreement with practical results To solve these problems, we have to uncover all previous simplification assumptions for the existing models. This leads in a first step to a new fundament in process mechanics, which is only based on mathematics, physics and material behavior with friction conditions, and resulting temperatures during metal plastic flow. The new mathematical equations developed for yield shear stress and strain rate will be presented and discussed in this paper. The plastic deformation is the only parameter that will not disappear after completing the operation. Therefore, this will be the base to compare the developed theoretical deformation with the experimental results for two operations: cutting and grinding. In addition, it could be shown that yield shear stress and corresponding strain rate versus temperatures have an interdependent relationship, which creates the opportunity to determine the temperatures during metal plastic flow.


2020 ◽  
Vol 246 ◽  
pp. 112432 ◽  
Author(s):  
Qi Wang ◽  
Tong Li ◽  
Bo Wang ◽  
Changzhi Liu ◽  
Qizhong Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document