Development of a Multi-Arm Bioprinter for Hybrid Tissue Engineering

Author(s):  
Howard Chen ◽  
Ibrahim T. Ozbolat

This paper highlights the development of a multi-arm bioprinter (MABP) capable of concurrent deposition of multiple materials with independent dispensing parameters including deposition speed, material dispensing rate and frequency for functional zonal-stratified articular cartilage tissue fabrication. The MABP consists of two Cartesian robots mounted in parallel on the same mechanical frame. This platform is used for concurrent filament fabrication and cell spheroid deposition. A single-layer structure is fabricated and concurrently deposited with spheroids to validate this system. Preliminary results showed that the MABP was able to produce filaments and spheroids with well-defined geometry and high cell viability. The resulting filament width has a variation of +/-170 μm and the center-to-center filament distance was within 100 μm of the specified distance. This fabrication system is aimed to be further refined for printing structures with varying porosities to mimic the natural cartilage structure in order to produce functional tissue-engineered articular cartilage using cell spheroids containing cartilage progenitor cells (CPCs).

Author(s):  
Haneen Abusharkh ◽  
Terreill Robertson ◽  
Juana Mendenhall ◽  
Bulent Gozen ◽  
Edwin Tingstad ◽  
...  

The present study is focused on designing an easy-to-use novel perfusion system for articular cartilage (AC) tissue engineering and using it to elucidate the mechanism by which interstitial shear upregulates matrix synthesis by articular chondrocytes (AChs). Porous chitosan-agarose (CHAG) scaffolds were synthesized, freeze-dried, and compared to bulk agarose (AG) scaffolds. Both scaffold types were seeded with osteoarthritic human AChs and cultured in a novel perfusion system for one week with a shear-inducing medium flow velocity of 0.33 mm/s corresponding to an average surficial shear of 0.4 mPa and a CHAG interstitial shear of 40 mPa. While there were no statistical differences in cell viability for perfusion vs. static cultures for either scaffold type, CHAG scaffold cultures exhibited 3.3-fold higher (p<0.005) cell viability compared to AG scaffold cultures. Effects of combined superficial and interstitial perfusion for CHAG showed 150- and 45-fold (p<0.0001) increases in total collagen (COL) and 13- and 2.2-fold (p<0.001) increases in glycosaminoglycans (GAGs) over AG’s scaffold non-perfusion and perfusion cultures, respectively, and a 1.5-fold and 3.6-fold (p<0.005) increase over non-perfusion CHAG cultures. Contrasting CHAG perfusion and static cultures, chondrogenic gene comparisons showed a 3.5-fold increase in collagen type II/type I (COL2A1/COL1A1) mRNA ratio (p<0.05), and a 1.3-fold increase in aggrecan mRNA. Observed effects are suggested to be the result of inhibiting the inflammatory NF-κB signal transduction pathway as confirmed by a further study that indicated a reduction by 3.2-fold (p<0.05) upon exposure to perfusion. Our results demonstrate that the presence of pores plays a critical role in improving cell viability and that interstitial flow caused by medium perfusion through the porous scaffolds enhances the expression of chondrogenic genes and ECM components through the downregulation of NF-κB1.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Er-Yuan Chuang ◽  
Chih-Wei Chiang ◽  
Pei-Chun Wong ◽  
Chih-Hwa Chen

The treatment of articular cartilage damage is a major task in the medical science of orthopedics. Hydrogels possess the ability to form multifunctional cartilage grafts since they possess polymeric swellability upon immersion in an aqueous phase. Polymeric hydrogels are capable of physiological swelling and greasing, and they possess the mechanical behavior required for use as articular cartilage substitutes. The chondrogenic phenotype of these materials may be enhanced by embedding living cells. Artificial hydrogels fabricated from biologically derived and synthesized polymeric materials are also used as tissue-engineering scaffolds; with their controlled degradation profiles, the release of stimulatory growth factors can be achieved. In order to make use of these hydrogels, cartilage implants were formulated in the laboratory to demonstrate the bionic mechanical behaviors of physiological cartilage. This paper discusses developments concerning the use of polymeric hydrogels for substituting injured cartilage tissue and assisting tissue growth. These gels are designed with consideration of their polymeric classification, mechanical strength, manner of biodegradation, limitations of the payload, cellular interaction, amount of cells in the 3D hydrogel, sustained release for the model drug, and the different approaches for incorporation into adjacent organs. This article also summarizes the different advantages, disadvantages, and the future prospects of hydrogels.


2011 ◽  
Vol 7 (12) ◽  
pp. 4187-4194 ◽  
Author(s):  
Wei-Bor Tsai ◽  
Wen-Tung Chen ◽  
Hsiu-Wen Chien ◽  
Wei-Hsuan Kuo ◽  
Meng-Jiy Wang

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 2158 ◽  
Author(s):  
Ivana Gadjanski

Articular cartilage (AC) is a seemingly simple tissue that has only one type of constituting cell and no blood vessels and nerves. In the early days of tissue engineering, cartilage appeared to be an easy and promising target for reconstruction and this was especially motivating because of widespread AC pathologies such as osteoarthritis and frequent sports-induced injuries. However, AC has proven to be anything but simple. Recreating the varying properties of its zonal structure is a challenge that has not yet been fully answered. This caused the shift in tissue engineering strategies toward bioinspired or biomimetic approaches that attempt to mimic and simulate as much as possible the structure and function of the native tissues. Hydrogels, particularly gradient hydrogels, have shown great potential as components of the biomimetic engineering of the cartilaginous tissue.


2019 ◽  
Vol 20 (2) ◽  
pp. 1900278 ◽  
Author(s):  
Zhongyi Zhao ◽  
Changjiang Fan ◽  
Feng Chen ◽  
Yutai Sun ◽  
Yujun Xia ◽  
...  

Author(s):  
Isaac E. Erikson ◽  
Cindy Chung ◽  
Jason A. Burdick ◽  
Robert L. Mauck

Intrinsic repair of articular cartilage is poor, and so numerous tissue engineering strategies have been developed for producing functional cartilage replacements. Photopolymerizable methacrylated hyaluronic acid (MeHA) hydrogels have been developed as a potential hydrogel that possesses the distinct advantage of being biologically relevant as well as easily modified to generate a range of hydrogel properties [1]. To date, optimization of this hydrogel has been carried out by adjusting macromer molecular weight, concentration, and extent of methacrylation. Recent studies using MeHA hydrogels with auricular chondrocytes have shown that adjustments in these parameters can have significant impact on cell viability and construct maturation. [1, 2].


Sign in / Sign up

Export Citation Format

Share Document