Evaluating Tensile Properties of 3D Printed Continuous Fiber Reinforced Nylon 6 Nanocomposites

Author(s):  
Zhihui Liu ◽  
Jing Shi ◽  
Yachao Wang

3D printing (additive manufacturing) has become a popular method to create three-dimensional objects due to its high efficiency and is easy to operate. 3D printing of continuous fiber reinforced polymers has been a challenge. The fused deposition modeling (FDM) processes for this purpose were proposed and made possible only several years ago. The 3D printed continuous fiber reinforced polymers are able to improve the mechanical properties by leaps and bounds. In this paper, we aim to investigate the possibility of further improve the mechanical properties of 3D printed continuous fiber reinforced polymers by adding nano fillers to the polymer matrix. In experiment, the Kevlar fiber is chosen to be the continuous fiber material, and nylon 6 (PA 6) is chosen to be the polymer matrix material. Carbon nanotubes (CNTs) and graphene nano platelets (GNPs) nanoparticles are first mixed with nylon 6 pellets to make nanocomposites. The nanocomposites are then extruded into filaments for 3D printing. During the 3D printing process, both Kevlar filament and nanocomposite filament are fed through the printing nozzle and deposited on the platform. Tensile specimens are made from pure PA 6 and four types of nanocomposites, namely, 0.1wt% CNT/PA 6, 1wt% CNT/PA 6, 0.1wt% GNP/PA 6, 1wt% GNP/PA 6. By incorporating four layers of Kevlar fiber, which leads to the weight percentage of about 9% for Kevlar fiber in materials, fiber composite tensile specimens are made from Kevlar/PA 6 composite and four fiber reinforced nanocomposites, namely, Kevlar/0.1%CNT/PA 6, Kevlar/1%CNT/PA 6, Kevlar/0.1%GNP/PA 6, and Kevlar/1%GNP/PA 6. The tensile tests reveal that CNTs filled PA 6 nanocomposites show less significant improvements in mechanical properties as compared to the GNP filled PA 6. With only 0.1wt% of GNP, the tensile modulus improves by 101%, and with 1wt% of GNP, the modulus improves by 153%. The results also indicate that although Kevlar fibers dominate the main mechanical properties of the printed composite materials, the existence of GNP nano fillers also provide noticeable contribution to the enhancement of tensile strengths and moduli, while the effect of CNTs is much less pronounced.

2019 ◽  
Vol 7 (4) ◽  
Author(s):  
Zhihui Liu ◽  
Yachao Wang ◽  
Jing Shi

Abstract Fused deposition modeling (FDM) printing of continuous fiber reinforced polymers had been a challenge until about 5 years ago. With the reinforcement of continuous fiber, the mechanical properties of FDM printed polymers are improved by leaps and bounds. In this paper, we aim to investigate the possibility of further improvement in the mechanical properties of three-dimensional (3D) printed continuous fiber reinforced polymers by adding nanoreinforcements to the polymer matrix. Kevlar fiber is selected as the continuous fiber reinforcement, nylon 6 (PA 6) is selected as the polymer matrix material, and carbon nanotubes (CNTs) or graphene nanoplatelets (GNPs) nanoparticles are selected as the nanoreinforcements. In the experiment, CNT or GNP nanoparticles are first mixed with nylon 6 pellets to make nanocomposites, the nanocomposites are then extruded into filaments for 3D printing, and finally, both Kevlar filament and nanocomposite filament are fed through the printing nozzle and deposited on the platform. Tensile specimens are directly printed from pure PA 6 and three types of nanocomposites, namely, CNT/PA 6, GNP/PA 6, and GNP-NH2/PA 6, as well as Kevlar fiber reinforced PA 6 and three types of Kevlar fiber reinforced nanocomposites. The results indicate that although Kevlar fibers dominate the enhancement of mechanical properties for the printed composite materials, the existence of GNP nanofillers also provide a noticeable contribution to the enhancement of tensile strengths and moduli, while the effect of CNTs is much less pronounced.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4520
Author(s):  
Salman Pervaiz ◽  
Taimur Ali Qureshi ◽  
Ghanim Kashwani ◽  
Sathish Kannan

Composite materials are a combination of two or more types of materials used to enhance the mechanical and structural properties of engineering products. When fibers are mixed in the polymeric matrix, the composite material is known as fiber-reinforced polymer (FRP). FRP materials are widely used in structural applications related to defense, automotive, aerospace, and sports-based industries. These materials are used in producing lightweight components with high tensile strength and rigidity. The fiber component in fiber-reinforced polymers provides the desired strength-to-weight ratio; however, the polymer portion costs less, and the process of making the matrix is quite straightforward. There is a high demand in industrial sectors, such as defense and military, aerospace, automotive, biomedical and sports, to manufacture these fiber-reinforced polymers using 3D printing and additive manufacturing technologies. FRP composites are used in diversified applications such as military vehicles, shelters, war fighting safety equipment, fighter aircrafts, naval ships, and submarine structures. Techniques to fabricate composite materials, degrade the weight-to-strength ratio and the tensile strength of the components, and they can play a critical role towards the service life of the components. Fused deposition modeling (FDM) is a technique for 3D printing that allows layered fabrication of parts using thermoplastic composites. Complex shape and geometry with enhanced mechanical properties can be obtained using this technique. This paper highlights the limitations in the development of FRPs and challenges associated with their mechanical properties. The future prospects of carbon fiber (CF) and polymeric matrixes are also mentioned in this study. The study also highlights different areas requiring further investigation in FDM-assisted 3D printing. The available literature on FRP composites is focused only on describing the properties of the product and the potential applications for it. It has been observed that scientific knowledge has gaps when it comes to predicting the performance of FRP composite parts fabricated under 3D printing (FDM) techniques. The mechanical properties of 3D-printed FRPs were studied so that a correlation between the 3D printing method could be established. This review paper will be helpful for researchers, scientists, manufacturers, etc., working in the area of FDM-assisted 3D printing of FRPs.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1878 ◽  
Author(s):  
Wang ◽  
Li ◽  
Rao ◽  
Wu ◽  
Peng ◽  
...  

: Short-fiber-reinforced thermoplastics are popular for improving the mechanical properties exhibited by pristine thermoplastic materials. Due to the inherent conflict between strength and ductility, there are only a few successful cases of simultaneous enhancement of these two properties in polymer composite components. The objective of this work was to explore the feasibility of simultaneous enhancement of strength and ductility in ABS-based composites with short-carbon and Kevlar fiber reinforcement by material extrusion 3D printing (ME3DP). Microstructure characterization and measurement of thermal and mechanical properties were conducted to evaluate the fiber-reinforced ABS. The influence of printing raster orientation and build direction on the mechanical properties of material extrusion of 3D-printed composites was analyzed. Experimental results demonstrated that the reinforcement of the ABS-based composites by short-carbon and Kevlar fibers under optimized 3D-printing conditions led to balanced flexural strength and ductility. The ABS-based composites with a raster orientation of ±45° and side build direction presented the highest flexural behaviors among the samples in the current study. The main reason was attributed to the printed contour layers and the irregular zigzag paths, which could delay the initiation and propagation of microcracks.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 726 ◽  
Author(s):  
Andrea Mantelli ◽  
Alessia Romani ◽  
Raffaella Suriano ◽  
Marco Diani ◽  
Marcello Colledani ◽  
...  

Despite the growing global interest in 3D printed carbon fiber reinforced polymers, most of the applications are still limited to high-performance sectors due to the low effectiveness–cost ratio of virgin carbon fibers. However, the use of recycled carbon fibers in 3D printing is almost unexplored, especially for thermoset-based composites. This paper aims to demonstrate the feasibility of recycled carbon fibers 3D printing via UV-assisted direct ink writing. Pyrolyzed recycled carbon fibers with a sizing treatment were firstly shredded to be used as a reinforcement of a thermally and photo-curable acrylic resin. UV-differential scanning calorimetry analyses were then performed to define the material crosslinking of the 3D printable ink. Because of the poor UV reactivity of the resin loaded with carbon fibers, a rheology modifier was added to guarantee shape retention after 3D printing. Thanks to a customized 3D printer based on a commercial apparatus, a batch of specimens was successfully 3D printed. According to the tensile tests and Scanning Electron Microscopy analysis, the material shows good mechanical properties and the absence of layer marks related to the 3D printing. These results will, therefore, pave the way for the use of 3D printed recycled carbon fiber reinforced polymers in new fields of application.


2018 ◽  
Vol 52 (23) ◽  
pp. 3173-3181 ◽  
Author(s):  
Kuldeep Agarwal ◽  
Suresh K Kuchipudi ◽  
Benoit Girard ◽  
Matthew Houser

Fiber reinforced polymer composites have been around for many decades but recently their use has started to increase in multiple industries such as automotive, aerospace, and construction. The conventional composite manufacturing processes such as wet lay-up, resin transfer molding, automatic lay ups etc. suffer from a lot of practical and material issues which have limited their use. The mechanical properties of the parts produced by such processes also suffer from variation that causes problems downstream. Composites based additive manufacturing processes such as Fused Deposition Modeling and Composite Filament Fabrication are trying to remove some of the barriers to the use of composites. Additive manufacturing processes offer more design and material freedom than conventional composite manufacturing processes. This paper compares conventional composite processes for the manufacturing of Epoxy-Fiberglass fiber reinforced polymers with composite filament fabrication based Nylon-Fiberglass fiber reinforced polymers. Mechanical properties such as tensile strength, elastic modulus, and fatigue life are compared for the different processes. The effect of process parameters on these mechanical properties for the composite filament fabrication based process is also examined in this work. It is found that the composite filament fabrication based process is very versatile and the parts manufactured by this process can be used in various applications.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3463
Author(s):  
Xin Wang ◽  
Xiaoyong Tian ◽  
Lixian Yin ◽  
Dichen Li

A novel 3D printing route to fabricate continuous fiber reinforced metal matrix composite (CFRMMC) is proposed in this paper. It is distinguished from the 3D printing process of polymer matrix composite that utilizes the pressure inside the nozzle to combine the matrix with the fiber. This process combines the metallic matrix with the continuous fiber by utilizing the wetting and wicking performances of raw materials to form the compact internal structures and proper fiber-matrix interfaces. CF/Pb50Sn50 composites were printed with the Pb50Sn50 alloy wire and modified continuous carbon fiber. The mechanical properties of the composite specimens were studied, and the ultimate tensile strength reached 236.7 MPa, which was 7.1 times that of Pb50Sn50 alloy. The fracture and interfacial microstructure were investigated and analyzed. The relationships between mechanical properties and interfacial reactions were discussed. With the optimized process parameters, several composites parts were printed to demonstrate the advantages of low cost, short fabrication period and flexibility in fabrication of complex structures.


2019 ◽  
Vol 215 ◽  
pp. 1015-1032 ◽  
Author(s):  
Radhwan Alzeebaree ◽  
Abdulkadir Çevik ◽  
Behzad Nematollahi ◽  
Jay Sanjayan ◽  
Alaa Mohammedameen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document