composite filament
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 32)

H-INDEX

10
(FIVE YEARS 3)

2021 ◽  
Vol 11 (24) ◽  
pp. 11823
Author(s):  
Vicentiu Saceleanu ◽  
Rubén Paz ◽  
Joshua García ◽  
Yamilet Rivero ◽  
Cosmin-Nicodim Cîndea ◽  
...  

Neurosurgery is one of the medical specialties in which the practical training of students is more limiting since it requires a high degree of preparation for the interventions to be satisfactory. That is why the manufacture of synthetic models through additive manufacturing (AM) arises to develop the skills that the neurosurgeon requires. The present work is aimed at validating the use of AM for the neurosurgery training. To this regard, a meningioma case study was considered, and suitable materials and more appropriate AM technology were identified for a low-cost production of synthetic models of both skulls and brains with tumors. The skull was manufactured by material extrusion AM with two materials, a commercial composite filament composed of polylactic acid (PLA) with calcium carbonate (used in the area to be treated during the cutting process, due to its mechanical properties more comparable to those of the native bone, with 30% infill density) and standard PLA without additives (used in the rest of the model, with 20% infill density). On the other hand, different casting silicones in different proportions were tested under compression molding to find the best combination to mimic the brain and tumor. Ten synthetic models of a real-case meningioma were manufactured and used as training material by students in the neurosurgery sector, who rated the proposed training approach very highly, considering the employment of printed models as a key resource for improving their surgical skills.


2021 ◽  
Vol 104 (8) ◽  
pp. 283-292
Author(s):  
David Alexander ◽  
Jake Pellicotte ◽  
Alejandro Mejia ◽  
Caitlin Benway ◽  
Calvin Maurice Stewart ◽  
...  

2021 ◽  
Vol 11 (19) ◽  
pp. 8798
Author(s):  
Thai-Hung Le ◽  
Van-Son Le ◽  
Quoc-Khanh Dang ◽  
Minh-Thuyet Nguyen ◽  
Trung-Kien Le ◽  
...  

This paper reports the synthesis of a new printable ABS–MWCNT composite filament, for use in fused deposition modeling (FDM), using an extrusion technique. Acrylonitrile butadiene styrene (ABS) and multi-walled carbon nanotubes (MWCNTs) were the initial materials used for fabricating the filaments. The MWCNTs were dispersed in ABS resin, then extruded through a single-shaft extruder in filament form, with MWCNT contents of 0.5%, 1%, 1.5%, 2%, 3% or 4% by weight. After extrusion, the diameter of the filaments was about 1.75 mm, making them appropriate for FDM. The as-synthesized filaments were then used in FDM to print out samples, on which tensile tests and other analyses were carried out. The results demonstrate that the sample with 2% MWCNTs had the highest strength value, 44.57 MPa, comprising a 42% increase over that of the pure ABS sample. The morphology and dispersion of MWCNTs in the composite were observed by field emission scanning electron microscopy (FESEM), demonstrating the uniform distribution of MWCNTs in the ABS matrix. The thermal behavior results indicated no significant change in the ABS structure; however, the melt flow index of the filaments decreased with an increase in the MWCNT content.


2021 ◽  
Vol 1046 ◽  
pp. 125-132
Author(s):  
Paul Eric C. Maglalang ◽  
Blessie A. Basilia ◽  
Araceli Magsino Monsada

It is quite amazing that the use of 3D printing techniques, especially the Fused Deposition Modelling (FDM) has delivered such significance in terms of cost reduction, time saver features where a different variety of thermoplastic and composite materials (Biodegradable and Non-biodegradable) are well developed. Different sectors have continually developed natural organic materials that are also both structurally composite in nature. Similarly, the use of different fibers that are abundantly accessible and considered as renewable resources which can be optionally combined with other biodegradable materials is a great challenge through the use of the FDM printing method. The study aims to determine the effect of different particle size and raster angle at a certain fiber concentration which could affect the mechanical properties of the composite by developing a printable composite filament made of Polylactic Acid (PLA) and Coco Coir materials using a filament maker and FDM printer. The composite filament was fabricated and optimized using a twin-screw extruder and 3D Devo Filament maker. 3D printing of samples for mechanical testing was conducted using three (3) raster angles (45o, 60o, and 75o) and various particle sizes of coco coir fiber reinforcement in the PLA matrix. Results showed that the < 74μm particle size of the coco-coir exhibited a 24% and 175% increase in tensile strength and izod impact strength compared to the pure PLA at 60o and 75o raster angles, respectively. Likewise, the reinforcement of <149μm particle size coco coir at 45o raster angle contributes to an increase of 4.8% flexural and 176% compressive strength compared to pure PLA. The study concludes that there is an improvement in the mechanical properties of the PLA-Coco Coir composite at a certain particle size and raster angle in 3D printing.


2021 ◽  
pp. 1-16
Author(s):  
J. J. Ariel Leong ◽  
S. C. Koay ◽  
M. Y. Chan ◽  
H. L. Choo ◽  
K. Y. Tshai ◽  
...  

2021 ◽  
Vol 7 (6) ◽  
pp. 57314-57334
Author(s):  
Kevin Sacramento Vivas Neres ◽  
Érica Cristina Almeida ◽  
José Carlos Camargo ◽  
Erickson Fabiano Moura Sousa Silva ◽  
Victor Hugo Martins De Almeida

2021 ◽  
pp. 50965
Author(s):  
Kankavee Sukthavorn ◽  
Natkritta Phengphon ◽  
Nollapan Nootsuwan ◽  
Pongsakorn Jantaratana ◽  
Chatchai Veranitisagul ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Alexis Maurel ◽  
Hyeonseok Kim ◽  
Roberto Russo ◽  
Sylvie Grugeon ◽  
Michel Armand ◽  
...  

This article focuses on the development of polylactic acid– (PLA-) based thermoplastic composite filament for its use, once 3D printed via thermoplastic material extrusion (TME), as current collector at the negative electrode side of a lithium-ion battery or sodium-ion battery. High electronic conductivity is achieved through the introduction of Ag-coated Cu charges, while appropriate mechanical performance to allow printability was maintained through the incorporation of poly(ethylene glycol) dimethyl ether average Mn ∼ 500 (PEGDME500) as a plasticizer into the PLA polymer matrix. Herein, thermal, electrical, morphological, electrochemical, and printability characteristics are discussed thoroughly. While Ag-Li alloy formation is reported at 0.1V upon cycling, its use with active materials such as Li4Ti5O12 (LTO) or Li2-terephthalate (Li2TP) operating at a plateau at higher potential is demonstrated. Furthermore, its ability to be used with negative electrode active material of sodium-ion battery technology in a wide potential window is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document