Effects of Build Orientation on Mechanical Properties of Curved-Surface AlSi10Mg Alloy Fabricated by Powder Bed Fusion Additive Manufacturing

Author(s):  
Yue Zhou ◽  
Fuda Ning

Abstract AlSi10Mg alloy has been widely used in the aerospace and automotive industries due to its superior physical and mechanical properties. Most AlSi10Mg components possess complicated-geometrical characteristics, such as planar thin wall, lattice structure, curved surface, etc. In recent years, laser-based powder bed fusion (PBF) has emerged as a promising additive manufacturing technique to produce complex AlSi10Mg alloy parts with a high resolution. PBF of curved-surface components exhibit varied heat transfer conditions, challenging post-fabrication processes, and intricate force conditions during mechanical testing owing to their structural inflections and variable cross-sections. Thus, the mechanical properties of the as-built AlSi10Mg parts with curved surfaces should be comprehensively understood to facilitate the adoption of PBF-built curved-surface AlSi10Mg parts in practical engineering applications. This paper systematically investigated the effects of build orientation on the tensile property and microhardness of the PBF-built AlSi10Mg parts with curved surfaces. The results showed that both bending stress and stretching stress contributed to the overall tensile stress of the curved-surface tensile specimens, and the failure always occurred at the peak/valley locations of the sine curved surface due to the largest bending moment. Meanwhile, the ultimate tensile strength increased with the build orientation varying from 60° to 90°. In addition, the curvatures C2 and C4 presented the lowest microhardness while C1 and C5 showed the highest one.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bing Zhang ◽  
Raiyan Seede ◽  
Austin Whitt ◽  
David Shoukr ◽  
Xueqin Huang ◽  
...  

Purpose There is recent emphasis on designing new materials and alloys specifically for metal additive manufacturing (AM) processes, in contrast to AM of existing alloys that were developed for other traditional manufacturing methods involving considerably different physics. Process optimization to determine processing recipes for newly developed materials is expensive and time-consuming. The purpose of the current work is to use a systematic printability assessment framework developed by the co-authors to determine windows of processing parameters to print defect-free parts from a binary nickel-niobium alloy (NiNb5) using laser powder bed fusion (LPBF) metal AM. Design/methodology/approach The printability assessment framework integrates analytical thermal modeling, uncertainty quantification and experimental characterization to determine processing windows for NiNb5 in an accelerated fashion. Test coupons and mechanical test samples were fabricated on a ProX 200 commercial LPBF system. A series of density, microstructure and mechanical property characterization was conducted to validate the proposed framework. Findings Near fully-dense parts with more than 99% density were successfully printed using the proposed framework. Furthermore, the mechanical properties of as-printed parts showed low variability, good tensile strength of up to 662 MPa and tensile ductility 51% higher than what has been reported in the literature. Originality/value Although many literature studies investigate process optimization for metal AM, there is a lack of a systematic printability assessment framework to determine manufacturing process parameters for newly designed AM materials in an accelerated fashion. Moreover, the majority of existing process optimization approaches involve either time- and cost-intensive experimental campaigns or require the use of proprietary computational materials codes. Through the use of a readily accessible analytical thermal model coupled with statistical calibration and uncertainty quantification techniques, the proposed framework achieves both efficiency and accessibility to the user. Furthermore, this study demonstrates that following this framework results in printed parts with low degrees of variability in their mechanical properties.


Author(s):  
Salah Eddine Brika ◽  
Yaoyao Fiona Zhao ◽  
Mathieu Brochu ◽  
Justin Mezzetta

This paper proposes an integrated approach to determine optimal build orientation for powder bed fusion by laser (PBF-L), by simultaneously optimizing mechanical properties, surface roughness, the amount of support structure (SUPP), and build time and cost. Experimental data analysis has been used to establish the objective functions for different mechanical properties and surface roughness. Geometry analysis of the part has been used to estimate the needed SUPP and thus evaluate the build time and cost. Normalized weights are assigned to different objectives depending on their relative importance allowing solving the multi-objective optimization problem using a genetic optimization algorithm. A study case is presented to demonstrate the capabilities of the developed system. The major achievements of this work are the consideration of multiple objectives and the establishment of objective function considering different load direction and heat treatments. A user-friendly graphical user interface was developed allowing to control different optimization process factors and providing different visualization and evaluation tools.


Author(s):  
C. J. J. Torrent ◽  
P. Krooß ◽  
T. Niendorf

AbstractIn additive manufacturing, the thermal history of a part determines its final microstructural and mechanical properties. The factors leading to a specific temperature profile are diverse. For the integrity of a parameter setting established, periphery variations must also be considered. In the present study, iron was processed by electron beam powder bed fusion. Parts realized by two process runs featuring different build plate sizes were analyzed. It is shown that the process temperature differs significantly, eventually affecting the properties of the processed parts.


2019 ◽  
Vol 818 ◽  
pp. 72-76 ◽  
Author(s):  
Konda Gokuldoss Prashanth ◽  
Sergio Scudino

Laser based powder bed fusion (LBPF) or selective laser melting (SLM) is making a leap march towards fabricating novel materials with improved functionalities. An attempt has been made here to fabricate hard quasicrystalline composites via SLM, which demonstrates that the process parameters can be used to vary the phases in the composites. The mechanical properties of the composite depend on their constituents and hence can be varied by varying the process parameters. The results show that SLM not only produces parts with improved functionalities and complex shape but also leads to defined phases and tunable properties.


Sign in / Sign up

Export Citation Format

Share Document