A printability assessment framework for fabricating low variability nickel-niobium parts using laser powder bed fusion additive manufacturing

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bing Zhang ◽  
Raiyan Seede ◽  
Austin Whitt ◽  
David Shoukr ◽  
Xueqin Huang ◽  
...  

Purpose There is recent emphasis on designing new materials and alloys specifically for metal additive manufacturing (AM) processes, in contrast to AM of existing alloys that were developed for other traditional manufacturing methods involving considerably different physics. Process optimization to determine processing recipes for newly developed materials is expensive and time-consuming. The purpose of the current work is to use a systematic printability assessment framework developed by the co-authors to determine windows of processing parameters to print defect-free parts from a binary nickel-niobium alloy (NiNb5) using laser powder bed fusion (LPBF) metal AM. Design/methodology/approach The printability assessment framework integrates analytical thermal modeling, uncertainty quantification and experimental characterization to determine processing windows for NiNb5 in an accelerated fashion. Test coupons and mechanical test samples were fabricated on a ProX 200 commercial LPBF system. A series of density, microstructure and mechanical property characterization was conducted to validate the proposed framework. Findings Near fully-dense parts with more than 99% density were successfully printed using the proposed framework. Furthermore, the mechanical properties of as-printed parts showed low variability, good tensile strength of up to 662 MPa and tensile ductility 51% higher than what has been reported in the literature. Originality/value Although many literature studies investigate process optimization for metal AM, there is a lack of a systematic printability assessment framework to determine manufacturing process parameters for newly designed AM materials in an accelerated fashion. Moreover, the majority of existing process optimization approaches involve either time- and cost-intensive experimental campaigns or require the use of proprietary computational materials codes. Through the use of a readily accessible analytical thermal model coupled with statistical calibration and uncertainty quantification techniques, the proposed framework achieves both efficiency and accessibility to the user. Furthermore, this study demonstrates that following this framework results in printed parts with low degrees of variability in their mechanical properties.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
José M. Zea Pérez ◽  
Jorge Corona-Castuera ◽  
Carlos Poblano-Salas ◽  
John Henao ◽  
Arturo Hernández Hernández

Purpose The purpose of this paper is to study the effects of printing strategies and processing parameters on wall thickness, microhardness and compression strength of Inconel 718 superalloy thin-walled honeycomb lattice structures manufactured by laser powder bed fusion (L-PBF). Design/methodology/approach Two printing contour strategies were applied for producing thin-walled honeycomb lattice structures in which the laser power, contour path, scanning speed and beam offset were systematically modified. The specimens were analyzed by optical microscopy for dimensional accuracy. Vickers hardness and quasi-static uniaxial compression tests were performed on the specimens with the least difference between the design wall thickness and the as built one to evaluate their mechanical properties and compare them with the counterparts obtained by using standard print strategies. Findings The contour printing strategies and process parameters have a significant influence on reducing the fabrication time of thin-walled honeycomb lattice structures (up to 50%) and can lead to improve the manufacturability and dimensional accuracy. Also, an increase in the young modulus up to 0.8 times and improvement in the energy absorption up to 48% with respect to those produced by following a standard strategy was observed. Originality/value This study showed that printing contour strategies can be used for faster fabrication of thin-walled lattice honeycomb structures with similar mechanical properties than those obtained by using a default printing strategy.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Adnen Mezghani ◽  
Abdalla R. Nassar ◽  
Corey J. Dickman ◽  
Eduardo Valdes ◽  
Raul Alvarado

Purpose An integral component in heat pipes (HPs) and vapor chambers (VCs) is a porous wicking structure. Traditional methods for manufacturing wicking structures within HPs and VCs involve secondary manufacturing processes and are generally limited to simple geometries. This work aims to leverage the unprecedented level of design freedom of laser powder bed fusion (LPBF) additive manufacturing (AM) to produce integrated wicking structures for HPs and VCs. Design/methodology/approach Copper wicking structures are fabricated through LPBF via partial sintering and via the formation of square, hexagonal and rectangular arrangements of micro-pins and micro-grooves, produced in multiple build directions. Wicks are characterized by conducting capillary performance analysis through the measurement of porosity, permeability and capillary rate-of-rise. Findings Copper wicking structures were successfully fabricated with capillary performance, K/reff, ranging from 0.186–1.74 µm. The rectangular-arrangement micro-pin wick presented the highest performance. Originality/value This work represents the first published report on LPBF AM of copper wicking structures for HPs/VCs applications and represents foundational knowledge for fabricating complete assemblies of copper VCs and HPs through LPBF AM.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chia-Hung Hung ◽  
Tunay Turk ◽  
M. Hossein Sehhat ◽  
Ming C. Leu

Purpose This paper aims to present the development and experimental study of a fully automated system using a novel laser additive manufacturing technology called laser foil printing (LFP), to fabricate metal parts layer by layer. The mechanical properties of parts fabricated with this novel system are compared with those of comparable methodologies to emphasize the suitability of this process. Design/methodology/approach Test specimens and parts with different geometries were fabricated from 304L stainless steel foil using an automated LFP system. The dimensions of the fabricated parts were measured, and the mechanical properties of the test specimens were characterized in terms of mechanical strength and elongation. Findings The properties of parts fabricated with the automated LFP system were compared with those of parts fabricated with the powder bed fusion additive manufacturing methods. The mechanical strength is higher than those of parts fabricated by the laser powder bed fusion and directed energy deposition technologies. Originality/value To the best knowledge of authors, this is the first time a fully automated LFP system has been developed and the properties of its fabricated parts were compared with other additive manufacturing methods for evaluation.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sareh Götelid ◽  
Taoran Ma ◽  
Christophe Lyphout ◽  
Jesper Vang ◽  
Emil Stålnacke ◽  
...  

Purpose This study aims to investigate additive manufacturing of nickel-based superalloy IN718 made by powder bed fusion processes: powder bed fusion laser beam (PBF-LB) and powder bed fusion electron beam (PBF-EB). Design/methodology/approach This work has focused on the influence of building methods and post-fabrication processes on the final part properties, including microstructure, surface quality, residual stresses and mechanical properties. Findings PBF-LB produced a much smoother surface. Blasting and shot peening (SP) reduced the roughness even more but did not affect the PBF-EB surface finish as much. As-printed PBF-EB parts have low residual stresses in all directions, whereas it was much higher for PBF-LB. However, heat treatment removed the stresses and SP created compressive stresses for samples from both PBF processes. The standard Arcam process parameter for PBF-EB for IN718 is not fully optimized, which leads to porosity and inferior mechanical properties. However, impact toughness after hot isostatic pressing was surprisingly high. Originality/value The two processes gave different results and also responses to post-treatments, which could be of advantage or disadvantage for different applications. Suggestions for improving the properties of parts produced by each method are presented.


2020 ◽  
Vol 985 ◽  
pp. 223-228
Author(s):  
Jana Bidulská ◽  
Róbert Bidulský ◽  
Patrik Petrouse ◽  
Tibor Kvačkaj ◽  
Marco Actis Grande ◽  
...  

The main aim of the present paper is evaluated the mechanical properties, microstructures and porosity of Ti6Al4V and CoCrW alloys produced by Laser Powder Bed Fusion (L-PBF) as an additive manufacturing (AM) technology. The mechanical properties were follows: For Ti6Al4V alloy the UTS was 1180 MPa; the YS was in the range <600; 745 MPa>. For CoCrW alloys, the UTS were in range <750; 950 MPa> and YS was in range <400; 500>. Evaluation of porosity was realized on non-etched samples using by quantitative image analysis in order to describe the dimensional and morphological porosity characteristics. The pores in the Ti6Al4V alloy showed homogeneous distribution without significant large pores.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6140
Author(s):  
Evgenii Borisov ◽  
Igor Polozov ◽  
Kirill Starikov ◽  
Anatoly Popovich ◽  
Vadim Sufiiarov

Multimaterial additive manufacturing is an attractive way of producing parts with improved functional properties by combining materials with different properties within a single part. Pure Ti provides a high ductility and an improved corrosion resistance, while the Ti64 alloy has a higher strength. The combination of these alloys within a single part using additive manufacturing can be used to produce advanced multimaterial components. This work explores the multimaterial Laser Powder Bed Fusion (L-PBF) of Ti/Ti64 graded material. The microstructure and mechanical properties of Ti/Ti64-graded samples fabricated by L-PBF with different geometries of the graded zones, as well as different effects of heat treatment and hot isostatic pressing on the microstructure of the bimetallic Ti/Ti64 samples, were investigated. The transition zone microstructure has a distinct character and does not undergo significant changes during heat treatment and hot isostatic pressing. The tensile tests of Ti/Ti64 samples showed that when the Ti64 zones were located along the sample, the ratio of cross-sections has a greater influence on the mechanical properties than their shape and location. The presented results of the investigation of the graded Ti/Ti64 samples allow tailoring properties for the possible applications of multimaterial parts.


Author(s):  
Mostafa Yakout ◽  
M. A. Elbestawi

Recently, additive manufacturing (AM) became a promising technology to manufacture complex structures with acceptable mechanical properties. The laser powder-bed fusion (L-PBF) process is one of the most common AM processes that has been used for producing a wide variety of metals and composites. Invar 36 is an austenite iron-nickel alloy that has a very low coefficient of thermal expansion; therefore, it is a good candidate for the L-PBF process. This chapter covers the state-of-the-art for producing Invar 36 using the L-PBF process. The chapter aims at describing research insights of using metal AM techniques in producing Invar 36 components. Like most of nickel-based alloys, Invar 36 is weldable but hard-to-machine. However, there are some challenges while processing these alloys by laser. This chapter also covers the challenges of using the L-PBF process for producing nickel-based alloys. In addition, it reports the L-PBF conditions that could be used to produce fully dense Invar 36 components with mechanical properties comparable to the wrought Invar 36.


Sign in / Sign up

Export Citation Format

Share Document