Critical Long Bone Defect Treated by Magnetic Scaffolds and Fixed by Permanent Magnets

Author(s):  
Alessandro Russo ◽  
Silvia Panseri ◽  
Tatiana Shelyakova ◽  
Monica Sandri ◽  
Chiara Dionigi ◽  
...  

Diaphyseal bone defect represents a significant problem for orthopaedic surgeons and patients. In order to improve and fasten bone regenerating process we implanted HA biodegradable magnetized scaffolds in a large animal model critical bone defect. A critical long bone defect was created in 6 sheep metatarsus diaphysis; then we implanted a novel porous ceramic composite scaffold (20.0 mm in length; 6.00 mm inner diameter and 17.00 mm outer diameter), made of Hydroxyapatite that incorporates magnetite (HA/Mgn 90/10), proximally fixated by two small cylindrical permanent parylene coated NdFeB magnets (one 6.00 mm diameter magnetic rod firmly incorporated into the scaffold and one 8.00 mm diameter magnetic rods fitted into proximal medullary canal, both 10.00 mm long); to give stability to the complex bone-scaffold-bone, screws and plate was used as a bridge. Scaffolds biocompatibility was previously assessed in vitro using human osteoblast-like cells. Magnetic forces through scaffold were calculated by finite element software (COMSOL Multiphysics, AC/DC Model). One week after surgery, magnetic nanoparticles functionalized with vascular endothelial growth factor (VEGF) were injected at the mid portion of the scaffold using a cutaneous marker positioned during surgery as reference point. After sixteen weeks, sheep were sacrificed to analyze metatarsi. Macroscopical, radiological and microCT examinations were performed. Macroscopical examination shows bone tissue formation inside scaffold pores and with complete coverage of scaffolds, in particular at magnetized bone-scaffold interface. X-rays show a good integration of the scaffold with a good healing process of critical bone defect, and without scaffolds mobilization. These datas were confirmed by the microCT that shown new formation of bone inside the scaffolds, in particular at magnetized bone-scaffold interface. These preliminary results lead our research to exploiting magnetic forces to stimulate bone formation, as attested in both in vitro and in vivo models and to improve fixation at bone scaffold interface, as calculated by finite element software, and moreover to guide targeted drug delivery without functionalized magnetic nanoparticles dissemination in all body. Histological analysis will be performed to confirm and quantify bone tissue regeneration at both interfaces.

2017 ◽  
Vol 8 (3) ◽  
pp. 758-772 ◽  
Author(s):  
Johanna Bolander ◽  
Wei Ji ◽  
Jeroen Leijten ◽  
Liliana Moreira Teixeira ◽  
Veerle Bloemen ◽  
...  

2000 ◽  
Vol 82 (12) ◽  
pp. 61
Author(s):  
Frank C. den Boer ◽  
Peter Patka ◽  
Fred C. Bakker ◽  
Burkhard W. Wippermann ◽  
Arthur van Lingen ◽  
...  

Author(s):  
Ainhoa Martinez Ormaetxea ◽  
Andreas Öchsner

The manufacturing process of bone scaffold structures has an important influence on the final mechanical strength of the structure. When the structures are not produced properly, i.e. have imperfections such as missing parts or slightly displaced joints, they lose some of their mechanical properties. The aim of this study was to see how different types of damage affect the structures and also if their effects are equal when the structure is subjected to different load conditions. The change of the mechanical behavior was determined using the commercial finite element software MSC Marc Mentat. In turn, the damage was introduced by manipulating the structure’s files (ASCII data files) using the programming language Fortran. Apart from the numerical simulations, experimental testing was also performed to verify the numerical results. In the frame of this study, useful information for further research is provided.


2016 ◽  
Vol 33 (02) ◽  
pp. 099-102
Author(s):  
O. Korenkov

Abstract Introduction: There is a significant divergence of data on the rate of resorption and replacement by the bone tissue of osteoplastic materials based on β-tricalcium phosphate in cancellous bone. At the same time in literature missing morphometric and electron microscopic features of bone tissue of the regenerate of compact substance of bone in these conditions. This study was aimed at the assessment of the healing of compact bone tissue defect after implantation of osteoplastic material “Calc-i-oss®” with the definition of the dynamics of resorption and morphological characteristics of bone tissue of the regenerate. Material and Methods: In the middle third of the diaphysis of the femur of rats there was reproduced the perforated defect to the bone-brain channel that was filled with osteoplastic material “Calc-i-oss®”. After surgery the fragments of injured bones were studied at the 60th and 120th day by methods of light microscopy with morphometry and scanning electron microscopy. Results: The conducted research revealed no inflammatory reaction at the site of the defect, signs of necrobiosis and necrosis of osteocytes in adjacent to the site of implantation maternal bone. The site of defect was filled with lamellar bone tissue high in osteoblasts, osteocytes and with integrated into its structure remains of “Calc-i-oss®”. On the surface and inside the implant there were found osteogenic cells and bone foci. It was established that the osteoplastic material throughout the observation period is subjected to development and replacement by bone tissue of the regenerate, the ratio of which on the 60th day of the experiment was 25.72 ± 2.06% to 74.28 ± 2.06%, and on the 120th day - 18.31 ± 1.54% to 81.69 ± 1.54%. Conclusion: Osteoplastic material “Calc-i-oss®” exhibits biocompatibility, osteoconductive properties, ability to resorption and is replaced by bone tissue, with which it integrates well.


2016 ◽  
Vol 129 (5) ◽  
pp. 557-561 ◽  
Author(s):  
Hua Chen ◽  
Xin-Ran Ji ◽  
Qun Zhang ◽  
Xue-Zhong Tian ◽  
Bo-Xun Zhang ◽  
...  

2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Su Wang ◽  
Linlin Liu ◽  
Xin Zhou ◽  
Danfeng Yang ◽  
Zhang’ao Shi ◽  
...  

Abstract Background Bone scaffold is one of the most effective methods to treat bone defect. The ideal scaffold of bone tissue should not only provide space for bone tissue growth, but also have sufficient mechanical strength to support the bone defect area. Moreover, the scaffold should provide a customized size or shape for the patient’s bone defect. Methods In this study, strontium-containing Mg-doped wollastonite (Sr-CSM) bioceramic scaffolds with controllable pore size and pore structure were manufactured by direct ink writing 3D printing. Biological properties of Sr-CSM scaffolds were evaluated by apatite formation ability, in vitro proliferation ability of rabbit bone-marrow stem cells (rBMSCs), and alkaline phosphatase (ALP) activity using β-TCP and Mg-doped wollastonite (CSM) scaffolds as control. The compression strength of three scaffold specimens was probed after completely drying them while been submerged in Tris–HCl solution for 0, 2,4 and 6 weeks. Results The mechanical test results showed that strontium-containing Mg-doped wollastonite (Sr-CSM) scaffolds had acceptable initial compression strength (56 MPa) and maintained good mechanical stability during degradation in vitro. Biological experiments showed that Sr-CSM scaffolds had a better apatite formation ability. Cell experiments showed that Sr-CSM scaffold had a higher cell proliferation ability compared with β-TCP and CSM scaffold. The higher ALP activity of Sr-CSM scaffold indicates that it can better stimulate osteoblastic differentiation and bone mineralization. Conclusions Therefore, Sr-CSM scaffolds not only have acceptable compression strength, but also have higher osteogenesis bioactivity, which can be used in bone tissue engineering scaffolds.


2001 ◽  
Vol 72 (4) ◽  
pp. 359-364 ◽  
Author(s):  
Yuan-Kun Tu ◽  
Cheng-Yo Yen ◽  
Wen-Lin Yeh ◽  
I-Chun Wang ◽  
Kun-Chang Wang ◽  
...  

2010 ◽  
Vol 96A (1) ◽  
pp. 66-74 ◽  
Author(s):  
Ludmila Luca ◽  
Anne-Laure Rougemont ◽  
Beat H. Walpoth ◽  
Ludovic Boure ◽  
Andrea Tami ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document