Diagnosis of the Noise Discipline in Petrobras Offshore Units Projects

Author(s):  
Ernani L. Sztajnbok ◽  
Luiz Antonio Vaz Pinto ◽  
Arcanjo Lenzi ◽  
Fernando Pedrosa Guedes ◽  
Regina Ce´lia Vieira de Assis

Health, comfort and the job efficiency of the crew of offshore platforms are factors deeply related to the acoustic quality of the places. The acoustic project of platforms include the noise prediction. It is a complex problem, because it involves several noise sources and receptors. Numeric methods such as Boundary Element Method and Finite Element Method are not still fully satisfactory for use in complex acoustic problems. This way, semi-empiric formulas and statistics methods are used in the prediction calculations. This paper describes some aspects of the Petrobras experience, along the years, in the performance of acoustic projects in offshore platforms. Finally, in this work, some important decisions are discussed for improvement of the acoustic quality of those operational units.

1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


1993 ◽  
Vol 21 (2) ◽  
pp. 66-90 ◽  
Author(s):  
Y. Nakajima ◽  
Y. Inoue ◽  
H. Ogawa

Abstract Road traffic noise needs to be reduced, because traffic volume is increasing every year. The noise generated from a tire is becoming one of the dominant sources in the total traffic noise because the engine noise is constantly being reduced by the vehicle manufacturers. Although the acoustic intensity measurement technology has been enhanced by the recent developments in digital measurement techniques, repetitive measurements are necessary to find effective ways for noise control. Hence, a simulation method to predict generated noise is required to replace the time-consuming experiments. The boundary element method (BEM) is applied to predict the acoustic radiation caused by the vibration of a tire sidewall and a tire noise prediction system is developed. The BEM requires the geometry and the modal characteristics of a tire which are provided by an experiment or the finite element method (FEM). Since the finite element procedure is applied to the prediction of modal characteristics in a tire noise prediction system, the acoustic pressure can be predicted without any measurements. Furthermore, the acoustic contribution analysis obtained from the post-processing of the predicted results is very helpful to know where and how the design change affects the acoustic radiation. The predictability of this system is verified by measurements and the acoustic contribution analysis is applied to tire noise control.


2013 ◽  
Vol 61 (1) ◽  
pp. 111-121 ◽  
Author(s):  
T. Jankowiak ◽  
T. Łodygowski

Abstract The paper considers the failure study of concrete structures loaded by the pressure wave due to detonation of an explosive material. In the paper two numerical methods are used and their efficiency and accuracy are compared. There are the Smoothed Particle Hydrodynamics (SPH) and the Finite Element Method (FEM). The numerical examples take into account the dynamic behaviour of concrete slab or a structure composed of two concrete slabs subjected to the blast impact coming from one side. The influence of reinforcement in the slab (1, 2 or 3 layers) is also presented and compared with a pure concrete one. The influence of mesh density for FEM and the influence of important parameters in SPH like a smoothing length or a particle distance on the quality of the results are discussed in the paper


2021 ◽  
Vol 4 (2) ◽  
pp. 001
Author(s):  
Maurizio Ponte ◽  
◽  
Filippo Catanzariti ◽  
Gloria Campilongo

Computational simulation is widely used in companies to perform analysis and improve the quality of products and projects. Most of these analyses are carried out using software that uses the Finite Element Method, which allows to obtain answers to numerous engineering problems. In this study, two examples of application to the study of tunnels of the Finite Element Method using the Geostru Software "GFAS - Geotechnical F.E.M. Analysis System" are proposed. The case of a tunnel excavated inside a granite rock massif was analyzed, first determining the state of stresses in the cavity contour through a theoretical method and comparing these results with those obtained in the software. Then, by means of finite element modeling, the settlements induced by the excavation were determined. Finally, the problem of tunnel excavation in a viscoplastic rock mass is presented and the authors propose a comparison of the analytical and numerical method.


1993 ◽  
Vol 115 (3) ◽  
pp. 262-267 ◽  
Author(s):  
J. Q. Ye

The postbuckling behavior of thin plates under combined loads is studied in this paper by using a mixed boundary element and finite element method. The transverse and the in-plane deformation of the plates are analyzed by the boundary element method and the finite element method, respectively. Spline functions were used as the interpolation functions and shape functions in the solution of both methods. A quadratic rectangular spline element is adopted in the finite element procedure. Numerical results are given for typical problems to show the effectiveness of the proposed approach. The possibilities to extend the method developed in this paper to more complicated postbuckling problems are discussed in the concluding section.


2020 ◽  
Vol 1000 ◽  
pp. 82-89
Author(s):  
Dhyah Annur ◽  
Muhammad S. Utomo ◽  
Talitha Asmaria ◽  
Daniel P. Malau ◽  
Sugeng Supriadi ◽  
...  

Osteosarcoma, as the most frequent bone tumor cases, can be found in the pelvis bone. Within the pelvis, the ilium is the most common location for osteosarcoma, followed by the acetabulum and then the ischium. Surgery of pelvis is difficult and the reconstruction is complicated mainly due to the geometry complexity and also the weight support function of the pelvis. Endoprosthesis of the ilium is therefore designed to increase the quality of life of the patient. In this study, the iliac implant is designed based on the natural geometry of the ilium, and the size is modified to fit the morphometry of the Eastern Asian. A finite element method (FEM) is proposed as a basic study in material selection. Titanium and its alloy (Ti-6Al-4V) are studied as the potential candidate for the proposed implant while the finite analysis of the bone was also included. As a preliminary study, in this FEM, only the static load is given, each material is assumed to be isotropic and the contacts were considered bonded. FEM in this study is expected to give a better understanding of the stress distribution, and to optimize the selection of materials.


Sign in / Sign up

Export Citation Format

Share Document