Elastodynamic Analysis of Towed Cable Systems by Global Nodal Position Vector Finite Element Method

Author(s):  
Zheng H. Zhu ◽  
Michael LaRosa ◽  
Feng J. Sun

The handling and control of towed cable and body systems onboard surface ships and submarines presents a significant technical challenge to design engineers in the defense and ocean industries. The current approaches rely heavily on the empirical methods and the time-consuming and costly prototype testing. Computer simulation provides a cost effective way to reduce the high risks associated with the towed cable/body system. However, the current dynamic analysis of towed cables is mostly done by the finite difference (FD) method in stead of the finite element (FE) method that is widely used in almost all engineering fields. This paper presents an alternative FE method to simulate the dynamics of towed cable and body system, in which the large rigid body motion is coupled with small elastic deformation. The newly derived FE method is formulated in terms of element nodal positions, which is different from the existing FE methods that use displacements. The alternative FE method solves for the cable position directly in order to eliminate accumulated numerical errors arising from existing FE methods that solve for displacements first in order to obtain the cable position over very long period of time. The alternative FE formulation is implemented and applied to real applications to demonstrate its robustness by comparing simulation results with the experimental and sea trial data.

Author(s):  
Zheng H. Zhu

The current approaches to the design of the handling of towed cable systems onboard surface ships rely heavily on empirical methods and time-consuming/expensive prototype testing. This paper presents a new nodal position finite element method (FEM) as a design tool to simulate the dynamics of towed body system effectively. By solving for the position of cable directly instead of indirectly via the displacement, the new FEM does not need to decouple the elastic deformation from the rigid body rotation and thus eliminates the error source arising from the linearized incremental approximation in existing FEM. Analysis results demonstrate the new FEM algorithm is simple and robust by comparing with numerical benchmark test and experiments including sea trial data.


Author(s):  
Furqan Qamar ◽  
Shunde Qin

AbstractAround the globe, the need for additional housing, due to the increase in world population, has led to the exploration of more cost effective and environmentally friendly forms of construction. Out of many technologies found, mortar-free interlocked masonry systems were developed to eliminate the deficiency of traditional masonry. For such systems against earthquakes, lateral resistance can be enhanced with plaster. But there is a need to further improve the performance of plaster in mortar-free interlocking walls for better ductility. The objective of this study is to develop nonlinear finite element (NLFE) models to explore the likely failure mechanism (e.g. bond failure) of such systems and to do parametric studies more cheaply than constructing many walls. Lateral failure load, load–displacement curves and crack patterns were compared with the experimental results. Parametric studies involving variation in block and plaster compressive strength and plaster thickness were undertaken using TNO DIANA NLFE models. A 150% increase in thickness of plaster only resulted in 28% increase in failure load, and column thickness can be reduced to theoretical 25 mm of blocks with 8 mm of plaster and yet exceed the lateral strength of a 150-mm-thick unplastered column. A cost analysis was also carried out, based on NLFE models, and showed that fibrous plastered column with 25-mm-thickness blocks gave equivalent performance to the 150-mm-thick unplastered column with 67% cost saving.


2021 ◽  
Vol 50 ◽  
pp. 101301
Author(s):  
A.Z. Zheng ◽  
S.J. Bian ◽  
E. Chaudhry ◽  
J. Chang ◽  
H. Haron ◽  
...  

Author(s):  
Rama Subba Reddy Gorla

Heat transfer from a nuclear fuel rod bumper support was computationally simulated by a finite element method and probabilistically evaluated in view of the several uncertainties in the performance parameters. Cumulative distribution functions and sensitivity factors were computed for overall heat transfer rates due to the thermodynamic random variables. These results can be used to identify quickly the most critical design variables in order to optimize the design and to make it cost effective. The analysis leads to the selection of the appropriate measurements to be used in heat transfer and to the identification of both the most critical measurements and the parameters.


1999 ◽  
Vol 122 (4) ◽  
pp. 498-507 ◽  
Author(s):  
Marcello Campanelli ◽  
Marcello Berzeri ◽  
Ahmed A. Shabana

Many flexible multibody applications are characterized by high inertia forces and motion discontinuities. Because of these characteristics, problems can be encountered when large displacement finite element formulations are used in the simulation of flexible multibody systems. In this investigation, the performance of two different large displacement finite element formulations in the analysis of flexible multibody systems is investigated. These are the incremental corotational procedure proposed in an earlier article (Rankin, C. C., and Brogan, F. A., 1986, ASME J. Pressure Vessel Technol., 108, pp. 165–174) and the non-incremental absolute nodal coordinate formulation recently proposed (Shabana, A. A., 1998, Dynamics of Multibody Systems, 2nd ed., Cambridge University Press, Cambridge). It is demonstrated in this investigation that the limitation resulting from the use of the infinitesmal nodal rotations in the incremental corotational procedure can lead to simulation problems even when simple flexible multibody applications are considered. The absolute nodal coordinate formulation, on the other hand, does not employ infinitesimal or finite rotation coordinates and leads to a constant mass matrix. Despite the fact that the absolute nodal coordinate formulation leads to a non-linear expression for the elastic forces, the results presented in this study, surprisingly, demonstrate that such a formulation is efficient in static problems as compared to the incremental corotational procedure. The excellent performance of the absolute nodal coordinate formulation in static and dynamic problems can be attributed to the fact that such a formulation does not employ rotations and leads to exact representation of the rigid body motion of the finite element. [S1050-0472(00)00604-8]


Sign in / Sign up

Export Citation Format

Share Document