Effect of Foundation Modeling on Extreme Response of Offshore Jack-up Unit

Author(s):  
Azadeh Jafari ◽  
Behrouz Asgarian ◽  
Mohammad Daghigh

The demand for operation of mobile jack-up drilling rigs in offshore industry is increasing. Extreme response of jack-up platforms in sea environment requires improving the understanding of their nonlinear behavior. A sample jack-up platform located in Persian Gulf is modeled using three dimensional capabilities of USFOS considering both geometric and material nonlinearity. USFOS is a numerical tool for ultimate strength and progressive collapse analysis at frame structures such as jack-up platforms. Results of the analysis for the sample jack-up subjected to storm load pattern are compared for three different foundation modeling cases (pinned, fixed and spudcan modeling of foundation). Static pushover analysis is performed to determined jack-up behavior assuming different cases for fixity of foundation. It is observed that modeling of exact foundation by a simplified pinned model underestimates ultimate lateral strength of jack-up. A fixed based modeling overestimates lateral ultimate strength of the platform.

2003 ◽  
Vol 125 (3) ◽  
pp. 211-218 ◽  
Author(s):  
M. J. Smith ◽  
N. G. Pegg

An automated approach to ultimate hull girder strength assessment using DRDC’s ultimate strength analysis suite (ULTSAS) is described. The analysis suite improves the ability to perform rapid ultimate strength assessments by providing access to UK and Canadian analysis codes and databases under a single user interface. The interface also allows for automatic cross-sectional model generation from three-dimensional ship finite element models with the MGDSA program. The main features of the ULTSAS system are described, including cross-sectional modelling, and the use of load-shortening curve databases. The paper also provides a review of the progressive collapse method for determining ultimate strength, which is now used in both the UK and Canadian analysis codes. Two numerical approaches are described, one based on curvature incrementing and the other on moment incrementing. It is shown that the moment incrementing procedure produces more accurate bi-axial interaction curves in some instances. Results are obtained for two damage configurations of the HALIFAX class frigate.


Author(s):  
Ning Cheng ◽  
Mehrdad Kimiaei ◽  
Mark J. Cassidy

Jack-ups, as the name indicates, are self-elevating units consisting of a floatable hull and, usually, three truss work or circular legs. As a mobile structure, jack-ups are mainly utilized for oil and gas exploration and maintenance purposes in shallow to medium water (up to 120 meters), though they have recently seen application in the construction of offshore wind energy infrastructure. The use of the finite element method for structural analyses of jack-ups is a common practice. However, most jack-up models remain elastic with the yielding of structural members or even the soil around the spudcan not accounted for. This paper describes the development of a comprehensive and integrated elasto-plastic jack-up model in ABAQUS [1]. This model is representative of a modern jack-up structure, and it can capture geometrical nonlinearities and plastic behaviour of the structural and soil materials. In this study, the discretisation of the structural elements, the choice of elements, the elasto-plastic behaviour of the material, and the mesh generation are described. Numerical results of a series of static pushover analyses for this sophisticated model under extreme loads are presented. The sensitivity of the results to the structural configurations is discussed. For instance, the choice of sectional properties of the chord member and the assumption of the behaviour of the spudcan (jack-up foundation)-soil interaction are shown to be critical to the prediction of the ultimate strength of the platform and the progressive failure mechanism. In conclusion, generic issues associated with static pushover analyses of jack-ups are discussed and possible numerical solutions are proposed.


2021 ◽  
pp. 136943322199249
Author(s):  
Riza Suwondo ◽  
Lee Cunningham ◽  
Martin Gillie ◽  
Colin Bailey

This study presents robustness analyses of a three-dimensional multi-storey composite steel structure under the action of multiple fire scenarios. The main objective of the work is to improve current understanding of the collapse resistance of this type of building under different fire situations. A finite element approach was adopted with the model being firstly validated against previous studies available in the literature. The modelling approach was then used to investigate the collapse resistance of the structure for the various fire scenarios examined. Different sizes of fire compartment are considered in this study, starting from one bay, three bays and lastly the whole ground floor as the fire compartment. The investigation allows a fundamental understanding of load redistribution paths and member interactions when local failure occurs. It is concluded that the robustness of the focussed building in a fire is considerably affected by the size of fire compartments as well as fire location. The subject building can resist progressive collapse when the fire occurs only in the one-bay compartment. On the other hand, total collapse occurs when fire is located in the edge three-bay case. This shows that more than one fire scenario needs to be taken into consideration to ensure that a structure of this type can survive from collapse in the worst-case situation.


Author(s):  
Naser Shabakhty ◽  
Pieter van Gelder ◽  
Hotze Boonstra

Generally, jack-up structures are used for production drilling and exploration of hydrocarbons. The combination of mobility and the behavior as a fixed structure in operational conditions has made it an important structure in the offshore industry over the last 40 years. When a jack-up structure has been in operation for a great part of its original design-life and intention is there to extend the usage of this structure at a specific location, an investigation on fatigue degradation of the structure is an essential factor that has to be carried out before taking any decision. Fatigue is the process of damage accumulation in material due to stress fluctuation caused by variation of loads in service time. The fatigue failure occurs when accumulated damage has exceeded a critical level. In this paper, the remaining fatigue capacity of the jack-up structure is considered as an indicator for adequate use of the structure. It can be specified based on the difference between design-fatigue and fatigue experienced by the structure. The design-fatigue can be determined based on fluctuation of loads during the lifetime of the structure and experienced fatigue is specified by the load conditions, which the structure has experienced during its service time. When the information on the load conditions which the structure has experienced in its service time is available or known precisely, determination of the remaining fatigue capacity could be carried out by using the Palmgren–Miner’s rule. In practice, uncertainties are present in loads and characteristics of material. Hence it will be reasonable to determine the remaining fatigue reliability of the structure by the reliability methods. In this paper, based on a crack propagation approach and achieved information from inspection, it is shown that the remaining fatigue reliability of jack-up structures could be determined and updated by using a Bayesian procedure in the duration of the service time.


Author(s):  
Antonio Pinto ◽  
Riccardo Broglia ◽  
Elena Ciappi ◽  
Andrea Di Mascio ◽  
Emilio F. Campana ◽  
...  

Vortex-Induced Vibration (VIV) is one of the most demanding areas in the offshore industry, and detailed investigation of the fluid-structure interaction is becoming fundamental for designing new structures able to reduce VIV phenomenon. To carry on such analysis, and get reliable results in term of global coefficients, the correct modelling of turbulence, boundary layer, and separated flows is required. Nonetheless, the more accurate is the simulation, the more costly is the computation. Unsteady RANS simulations provide a good trade-off between numerical accuracy and computational time. This paper presents the analysis of the flow past a cylinder with several three-dimensional helical fins at high Reynolds number. Flow field, vortical structures, and response frequency patterns are analysed. Spectral analysis of data is performed to identify carrier frequencies, deemed to be critical due to the induced vibration of the whole structure. Finally, helical strakes efficiency in reducing the riser vibrations is also addressed, through direct consideration on the carrier shedding frequency.


2010 ◽  
Vol 10 (01) ◽  
pp. 111-126 ◽  
Author(s):  
S. W. LIU ◽  
Y. P. LIU ◽  
S. L. CHAN

Nonlinear static (pushover) analysis is an effective and simple tool for evaluating the seismic response of structures and offers an attractive choice for the performance-based design. As such, it has generally been used in modern design due to its practicality. However, the nonlinear plastic design method consumes extensive computational effort for practical structures under numerous load cases. Thus, an efficient element capturing the nonlinear behavior of a beam-column will be useful. In this paper, the authors propose a practical pushover analysis procedure using a single element per member for seismic design. As an improvement to previous research works, both P – Δ and P – δ effects as well as initial imperfections in global and member levels are considered. Therefore, the section capacity check without the assumption of effective length is adequate for present design and the conventional individual element design is avoided. The uncertainty of the buckling effects and effective length method can be eliminated and so a more economical design can be achieved. Two benchmark steel frames of three-storey and nine-storey in FEMA 440 were analyzed to illustrate the validity of the proposed method.


Author(s):  
B Byrne ◽  
M Cassidy ◽  
J Byron-Brown ◽  
B Bienen
Keyword(s):  

1985 ◽  
Vol 1985 (158) ◽  
pp. 463-475
Author(s):  
Yukio Ueda ◽  
Takaaki Ishihama ◽  
Keiji Nakacho ◽  
Shigeki Akamatsu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document