Automated Assessment of Ultimate Hull Girder Strength

2003 ◽  
Vol 125 (3) ◽  
pp. 211-218 ◽  
Author(s):  
M. J. Smith ◽  
N. G. Pegg

An automated approach to ultimate hull girder strength assessment using DRDC’s ultimate strength analysis suite (ULTSAS) is described. The analysis suite improves the ability to perform rapid ultimate strength assessments by providing access to UK and Canadian analysis codes and databases under a single user interface. The interface also allows for automatic cross-sectional model generation from three-dimensional ship finite element models with the MGDSA program. The main features of the ULTSAS system are described, including cross-sectional modelling, and the use of load-shortening curve databases. The paper also provides a review of the progressive collapse method for determining ultimate strength, which is now used in both the UK and Canadian analysis codes. Two numerical approaches are described, one based on curvature incrementing and the other on moment incrementing. It is shown that the moment incrementing procedure produces more accurate bi-axial interaction curves in some instances. Results are obtained for two damage configurations of the HALIFAX class frigate.

2019 ◽  
Vol 9 (2) ◽  
pp. 240 ◽  
Author(s):  
Jialong Jiao ◽  
Yong Jiang ◽  
Hao Zhang ◽  
Chengjun Li ◽  
Chaohe Chen

In this paper, the hydroelastic motion and load responses of a large flexible ship sailing in irregular seaways are predicted and the hull girder ultimate strength is subsequently evaluated. A three-dimensional time-domain nonlinear hydroelasticity theory is developed where the included nonlinearities are those arising from incident wave force, hydrostatic restoring force and slamming loads. The hull girder structure is simplified as a slender Timoshenko beam and fully coupled with the hydrodynamic model in a time domain. Segmented model towing-tank tests are then conducted to validate the proposed hydroelasticity theory. In addition, short-term and long-term predictions of ship responses in irregular seaways are conducted with the help of the developed hydroelastic code in order to determine the extreme design loads. Finally, a simplified strength-check equation is proposed, which will provide significant reference and convenience for ship design and evaluation. The hull girder ultimate strength is assessed by both the improved Rule approach and direct calculation.


Author(s):  
Muhammad Zubair Muis Alie ◽  
Ganding Sitepu ◽  
Juswan Sade ◽  
Wahyuddin Mustafa ◽  
Andi Mursid Nugraha ◽  
...  

This paper discusses the influence of asymmetrically damaged ships on the ultimate hull girder strength. When such damages take place at the asymmetric location of cross sections, not only translation but also inclination of instantaneous neutral axis takes place during the process of the progressive collapse. To investigate this effect, the Finite Element Analysis (FEA) is employed and the damage is assumed in the middle hold. The collision damage is modeled by removing the plate and stiffener elements at the damage region assuming the complete loss of the capacity at the damage part. For the validation results obtained by Finite Element Analysis of the asymmetrically damaged ship hull girder, the simplified method is adopted. The Finite Element method of ultimate strength analysis of a damaged hull girder can be a practical tool for the ship hull girder after damages, which has become one of the functional requirements in IMO Goal Based Ship Construction Standard.


Author(s):  
Yoshiteru Tanaka ◽  
Yutaka Hashizume ◽  
Hiroaki Ogawa ◽  
Akira Tatsumi ◽  
Masahiko Fujikubo

A ship hull is regarded as a box girder structure consisting of plates and stiffeners. When the ship hull is subjected to excessive longitudinal bending moment, buckling and yielding of plates and stiffeners take place progressively and the ultimate strength of the cross-section is attained. The ultimate longitudinal bending strength is one of the most fundamental strength of a ship hull girder. Finite element method (FEM) analysis using fine-mesh hold models has been increasingly applied to the ultimate longitudinal strength analysis of ship hull girder. However, the cost and elapsed time necessary for FEM analysis including finite element modelling are still large for the design stage. Therefore, the so-called Smith’s method [1] has been widely employed for the progressive collapse analysis of a ship hull girder under bending. Recently, there is a growing demand for a container ship, which is characterized as a hull girder with large open decks. This type of ship has a relatively small torsional stiffness compared to the ships with closed cross-section and the effect of torsion on the ultimate longitudinal strength may be significant. However, the Smith’s method above mentioned cannot consider the influence of torsion. Therefore, some of the authors developed a simplified method of the ultimate strength analysis of a hull girder under torsion as well as bending [2–4]. In this method, a hull girder is modeled by linear beam elements in the longitudinal direction, and the warping as well as bending deformation is included in the formulation. The cross-section of a beam element is divided into plate elements by the same way as the Smith’s method. Therefore, the shift of instantaneous neutral axis and shear center can be automatically considered by introducing the axial degree of freedom as well as the bending ones into the beam elements, and keeping the zero axial load condition. In this study, the average stress-average strain relationship of each element is calculated using the formulae of the Common Structural Rules (CSR) [5] and HULLST proposed by Yao et al. [6, 7] considering the effect of shear stress due to torsion on the yield strength. There had been a lot of papers [8] which discuss the importance of strength assessment to large container ships under torsion. However, there are few papers which discuss the influence of torsion on the ultimate hull girder strength. In this paper, the proposed simplified method is applied to the existing Post-Panamax class container ship. First, a torsional moment is applied to the beam model for the ship within the elastic range. Then, the ultimate bending strength of cross-sections is calculated applying the Smith’s method to a beam element considering the warping and shear stresses. On the other hand, nonlinear explicit FEM are adopted for the progressive collapse analysis of the ship by using LS-DYNA. The effectiveness of present simplified analysis method of ultimate hull girder strength under combined loads is discussed compared with the LS-DYNA analysis.


Author(s):  
Suhas Vhanmane ◽  
Baidurya Bhattacharya

The ultimate strength of a ship’s hull depends on its material and geometric properties, some or all of which may be random in nature. In addition, initial imperfections in the form of initial deflection and residual welding stresses in plating between stiffeners can significantly affect the hull ultimate strength. In this paper, the effect of randomness in yield strength and in the initial imperfections on ultimate hull girder strength is determined. Different levels of statistical dependence between yield strength and initial imperfection of stiffeners and plating between stiffeners have been considered. The methodology is applied on a bulk carrier and a VLCC tanker.


Author(s):  
C. Toderan ◽  
T. Richir ◽  
J. D. Caprace ◽  
Ph. Rigo

This paper presents a methodology to take into account model uncertainties related to the load-end shortening curve of stiffened panels. This method is a part of a research activity carried out at University of Liege. His goal is to propose a reliability based model to assess hull girder ultimate strength using a progressive collapse algorithm. The numerical results presented here concern the load-shortening model chosen for this research, which is based on Bureau Veritas rules. Model uncertainty is quantified as a parameter considered as a random variable. Four statistical moments (mean, standard deviation, skewness and kurtosis) of this parameter are calculated and analyzed using a data-base of stiffened panels test results published in recent years. In order to increase the number of “actual” values for the statistical assessment, the data-base is completed with non-linear finite element analysis results. The paper contains also some recommendation for the implementation of the proposed method in ultimate strength reliability based analysis.


2011 ◽  
Vol 55 (04) ◽  
pp. 289-300 ◽  
Author(s):  
S. Saad-Eldeen ◽  
Y. Garbatov ◽  
C. Guedes Soares

This paper presents a corrosion-dependent analysis of the ultimate strength analysis of aged box girders based on experimental results. Three multispan corroded stiffened box girders subjected to four-point vertical load are analyzed, idealizing the behavior of midship sections of full ships. The specimens have three levels of corrosion. Two corrosion-dependent formulas for assessing the ultimate strength as well as the ultimate bending moment of corroded structures are proposed. Using a time-dependent corrosion growth model, equivalent time-dependent formulations are developed. The effect of corrosion degradation on the residual stresses during the service life is also analyzed, and a regression equation for predicting the remaining residual stresses along the service life is proposed. Finally, a corrosion-dependent moment-curvature relationship has been developed accounting for the changes in geometrical characteristics and material properties of the tested box girders.


Author(s):  
Suhas Vhanmane ◽  
Baidurya Bhattacharya

The ultimate strength of a ship’s hull depends on its material and geometric properties, some or all of which may be random in nature. In addition, initial imperfections in the form of the initial deflection and residual welding stresses in the plating between stiffeners, can significantly affect the hull ultimate strength. In this paper, the effect of randomness in yield strength, member thickness and in the initial imperfections on ultimate hull girder strength is determined. Different levels of statistical dependence between the yield strength and initial imperfection of all stiffeners and plating between stiffeners have been considered. The methodology is applied on a bulk carrier and a VLCC tanker.


Sign in / Sign up

Export Citation Format

Share Document