PUSHOVER ANALYSIS BY ONE ELEMENT PER MEMBER FOR PERFORMANCE-BASED SEISMIC DESIGN

2010 ◽  
Vol 10 (01) ◽  
pp. 111-126 ◽  
Author(s):  
S. W. LIU ◽  
Y. P. LIU ◽  
S. L. CHAN

Nonlinear static (pushover) analysis is an effective and simple tool for evaluating the seismic response of structures and offers an attractive choice for the performance-based design. As such, it has generally been used in modern design due to its practicality. However, the nonlinear plastic design method consumes extensive computational effort for practical structures under numerous load cases. Thus, an efficient element capturing the nonlinear behavior of a beam-column will be useful. In this paper, the authors propose a practical pushover analysis procedure using a single element per member for seismic design. As an improvement to previous research works, both P – Δ and P – δ effects as well as initial imperfections in global and member levels are considered. Therefore, the section capacity check without the assumption of effective length is adequate for present design and the conventional individual element design is avoided. The uncertainty of the buckling effects and effective length method can be eliminated and so a more economical design can be achieved. Two benchmark steel frames of three-storey and nine-storey in FEMA 440 were analyzed to illustrate the validity of the proposed method.

2010 ◽  
Vol 163-167 ◽  
pp. 1757-1761
Author(s):  
Yong Le Qi ◽  
Xiao Lei Han ◽  
Xue Ping Peng ◽  
Yu Zhou ◽  
Sheng Yi Lin

Various analytical approaches to performance-based seismic design are in development. Based on the current Chinese seismic codes,elastic capacity calculation under frequent earthquake and ductile details of seismic design shall be performed for whether seismic design of new buildings or seismic evaluation of existing buildings to satisfy the seismic fortification criterion “no damage under frequent earthquake, repairable under fortification earthquake, no collapse under severe earthquake”. However, for some special buildings which dissatisfy with the requirements of current building codes, elastic capacity calculation under frequent earthquake is obviously not enough. In this paper, the advanced performance-based seismic theory is introduced to solve the problems of seismic evaluation and strengthening for existing reinforced concrete structures, in which story drift ratio and deformation of components are used as performance targets. By combining the features of Chinese seismic codes, a set of performance-based seismic design method is established for reinforced concrete structures. Different calculation methods relevant to different seismic fortification criterions are adopted in the proposed method, which solve the problems of seismic evaluation for reinforced concrete structures.


2011 ◽  
Vol 243-249 ◽  
pp. 3992-3996
Author(s):  
Gui Xuan Wang ◽  
Jie Zhao ◽  
Zhen Liu ◽  
Yang Zheng

The performance-based design is a new development trend of seismic design. It is a breakthrough of the seismic design procedures. Based on the existing performance design method and some documents provided performance objective, computing and seismic structural measures, the performance-based seismic design is applied to the special structure of conventional island of the nuclear power plant. The performance-based seismic design is proved to be feasible according to a practical engineering case, as well the performance-based seismic design is needed to be further improved.


2020 ◽  
Vol 10 (11) ◽  
pp. 3942 ◽  
Author(s):  
Heungbae Gil ◽  
Kyoungbong Han ◽  
Junho Gong ◽  
Dooyong Cho

In areas of civil engineering, the resilient friction base isolator (R-FBI) system has been used due to its enhanced isolation performance under seismic excitations. However, because nonlinear behavior of the R-FBI should be reflected in seismic design, effective stiffness (Keff) of the R-FBI is uniformly applied at both peak ground acceleration (PGA) of 0.08 g and 0.154 g which use a multimodal response spectrum (RS) method analysis. For rational seismic design of bridges, it should be required to evaluate the dynamics of the R-FBI from in-field tests and to improve the seismic design procedure based on the performance level of the bridges. The objective of this study is to evaluate the dynamics of the R-FBI and to suggest the performance-based seismic design method for cable-supported bridges with the R-FBI. From the comparison between the experiments’ results and modal shape analyses, the modal shape analyses using primary (Ku) or infinite stiffness (fixed end) showed a great agreement with the experimental results compared to the application of Keff in the shape analysis. Additionally, the RS or nonlinear time history method analyses by the PGA levels should be applied by reflecting the dynamic characteristics of the R-FBI for the reasonable and efficient seismic design.


Author(s):  
Fang Liu ◽  
Feng Gao ◽  
Ling Liu ◽  
Denis N. Sidorov ◽  
◽  
...  

The difficulties in implementing the model predictive control (MPC) in interior permanent-magnet synchronous motors (IPMSMs) consist of the nonlinear behavior of IPMSMs and the computational effort required by MPC. This paper presents an IPMSM controller design method for electric vehicles based on explicit MPC (EMPC), which uses a different linearization method. The proposed controller combines the speed and current controllers and replaces the traditional cascade structure. First, the nonlinear terms in the system model are added into the control input as voltage compensation to obtain a simple linear model. Next, the proposed controller based on MPC is designed, which considers the effects of load torque and uses an increment model. Furthermore, the controller applies both current and voltage constraints. The EMPC method based on a binary search is used to accelerate the solution of the optimization problem. Finally, the simulation results show the validity and superiority of the proposed method.


2013 ◽  
Vol 353-356 ◽  
pp. 1875-1878
Author(s):  
Ling Huang

The application of performance-based seismic design method in super high-rise building is studied in this article. The two-stage design process of a super high-rise building is introduced. On the base of proposing the performance standards and objectives of the super high-rise building under earthquake actions of different levels, optimal solution is provided after computational analyses with different softwares. Computational analyses indicate that the design could satisfy all seismic fortification requirements and seismic performance objectives of China's seismic codes in force. The performance-based design idea can provide a reference for similar projects.


2012 ◽  
Vol 457-458 ◽  
pp. 1420-1423
Author(s):  
Ting Yue Hao

Research progress of structural seismic design theory is analyzed and collated in this paper, including static analysis theory, theory of response spectrum, dynamic theory. The three theoretical research and design methods are analyzed and described in the paper one by one. At last, modern seismic design method which is called performance-based seismic design theory is compared and analyzed with the traditional anti-seismic design theory. Its advanced characteristics and advantages are obtained, which will be the core and development of seismic design ideas.


Author(s):  
Mathieu Gil-oulbé ◽  
Fouad Adnan Noman Abdullah Al-Shaibani ◽  
Abass Saad Lina

Structures are designed using current seismic design codes which are mostly based on Force-Based Design approach. The aim of the work is to implement the Performance-Based Seismic Design (PBSD) approach in concrete buildings. PBSD, which is a new concept in seismic design of structures, is a reliable approach capable of providing more detailed information on the performance levels of both structural and non-structural elements. Methods. In this study Performance-Based Seismic Design has been utilized on reinforced concrete irregular frame. In order to do this pushover analysis was done. Story drift ratios were chosen as deformation limits to define the performance levels for specific earthquake hazard levels. The results of this study show that Performance-Based Seismic Design gives a structure with better seismic load carrying capacity, thereby achieving the objective of performance as well as economy. It is also possible to conclude that PBSD obtained by above procedure satisfies the acceptance criteria for immediate occupancy and life safety limit states for various intensities of earthquakes.


Sign in / Sign up

Export Citation Format

Share Document