Comparative Reliability Analysis of FAST-Pipe™ and All-Steel Pipe

Author(s):  
Qishi Chen ◽  
Mamdouh M. Salama

Fiber Augmented Steel Technology Pipe (FAST-Pipe™) is being proposed as an alternative to high strength steel (grade X80 or higher) for high pressure gas transmission pipelines. The FAST-Pipe™ is manufactured by wrapping dry fiberglass on conventional steel pipe. It offers many performance and cost advantages. However, as with any proposed new technology, it is required to achieve a reliability level at least equal to the conventional all-steel technology. This paper summarizes the results of a burst failure probability analysis. It was part of the ongoing work to experimentally and analytically establish the design basis for FAST-Pipe™. The purpose of this study is to estimate the burst failure probabilities of defect-free all-steel and FAST pipes after 30 years of operation, and to identify FAST-Pipe™ design cases which can achieve burst reliability levels comparable to those of an all-steel design. The results of this study suggest that a safety factor of 2.0 on burst pressure is adequate for the FAST-Pipe™.

Author(s):  
Markus R. Dann ◽  
Marc A. Maes ◽  
Mamdouh M. Salama

Dry fiber augmented steel technology pipelines (FAST-Pipe™) have recently been the object of considerable attention due to both cost and availability advantages (as opposed to high strength steels) and due to their promising use in future Arctic pipeline solutions. The present paper focuses on the development and the use of a burst limit state for such fiber wrapped pipes. It describes in detail a probabilistic mechanical burst limit state model for FAST. The model is based on a large strain Cauchy stress formulation using Stewart’s isotropic strain hardening for steel pipe which is hoop-constrained by elastic fiber wrapping. The limit state model is used for a reliability comparison between FAST-Pipes and traditional pure steel pipes as well as for a risk-based equivalence between different design solutions.


2013 ◽  
Vol 378 ◽  
pp. 209-212
Author(s):  
Dong Gun Lee ◽  
Byunh Hyun Ahn ◽  
Je Hyun Lee ◽  
Uk Rae Cho ◽  
Bon Heun Koo

Al7075 alloy has typically good mechanical properties. Al7075 alloy has an ultimate tensile strength and yield strength, which is commonly used in the manufacturing of heavy-duty structures requiring good corrosion resistance and in applications requiring high strength to weight ratio, as well as good fatigue resistance. However, as compared to strength and corrosion of conventional steel material, it has some drawbacks. To overcome these disadvantages, Electrolytic plasma processing (EPP) was used. (EPP) is a novel electrochemical and physical surface treatment process for generating protective coatings on light metals. Because, these coating scan present high hardness and continuous barriers, it can offers good protection against abrasion, corrosion and heat as well as electrical insulation. The EPP treatments were carried out under a hybrid voltage of AC 200V (50Hz) combined with DC 260V power supply.


Author(s):  
Alfonso Izquierdo ◽  
Hector Quintanilla ◽  
Gilles Richard ◽  
Ettore Anelli ◽  
Gianluca Mannucci ◽  
...  

The technological evolution in the offshore sector points out a trend towards an increasing use of high strength steels (grade 80ksi and higher), for both pipelines and risers. Pipeline specifications for deepwater offshore fields demand developments in design criteria (i.e. limit state design), welding, installation, and laying technologies. As long as the market goes deeper in offshore exploration and production, the market trend is to use heavier pipes in steel grade X65/X70 and some technological limits from several fronts are faced and more attractive becomes for the market to have a lighter high strength 100ksi seamless steel grade. The joint industrial program (JIP), termed “Seamless 100 ksi weldable” launched by Tenaris in order to address the complex design issues of high strength Q&T seamless pipes for ultra deep water applications has been finalized. The 100ksi steel grade has been achieved in two wall thickness 16 mm and 25 mm. The main results from both phase I devoted to the development and production of seamless pipes with minimum 100ksi and phase II devoted to evaluate the high strength seamless pipe weldability will be addressed in this paper. Main microstructural features promoting the best strength-toughness results obtained from phase I and the results from phase II, where the heat affected zone (HAZ) characterization made using stringent qualifying configuration such as API RP2Z and the promising results after qualifying the girth welds simulating a typical offshore operation and the Engineering Critical Assessment for installation will be addressed. The results from this development are of interest of all oil & gas companies who are facing as an output from the design project analysis the need to have high strength seamless pipes.


2021 ◽  
Author(s):  
Dalal Elmoutawakkil ◽  
Nabil Hacib

Advanced digital technology is rapidly changing the world, as well as transforming the dental profession. The adoption of digital technologies in dental offices allied with efficient processes and accurate high-strength materials are replacing conventional aligners workflows to improve overall patients’ experiences and outcomes. Various digital devices such as 3D printers, intraoral and face scanners, cone-beam computed tomography (CBCT), software for computer 3D ortho setup, and 3D printing provide new potential alternatives to replace the traditional outsourced workflow for aligners. With this new technology, the entire process for bringing clear aligner production in-office can significantly reduce laboratory bills and increase patient case acceptance to provide high-quality and customized aligner therapy.


Author(s):  
Nicholas J. Venero ◽  
Tim J. M. Bond ◽  
Raymond N. Burke ◽  
David J. Miles

A new technology for external rehabilitation of pipelines, known as XHab™, has been developed. This method involves wrapping multiple layers of ultra-high strength steel (UHSS) strip in a helical form continuously over an extended length of pipeline using a dedicated forming and wrapping machine. The reinforcement afforded by the strip can be used to bring a defective section of pipe (e.g. externally corroded or dented) back to its original allowable operating conditions, or even to increase the allowable operating pressure if the desired operating conditions exceed the original pipeline design limits. This paper describes the design, manufacture and testing process for a self-propelled wrapping machine for in-field rehabilitation. The wrapping apparatus consists of several major components including an opening sufficiently wide to receive the pipe, a movement assembly, a winding head, a preforming device, an accumulator and an oscillating adhesive applicator. The wrapping apparatus uses the winding head to wrap the reinforcing steel strip around the pipe. The movement assembly uses a pair of tracks in contact with the pipe to drive the wrapping apparatus along which enables helical wrapping of the reinforcing strip material. The oscillating adhesive assembly applies structural adhesive to the pipe immediately before the strip is wound. The winding head, motive assembly and adhesive applicator are electronically synchronized to one another to enable precise control of pitch and adhesive volume. The paper also describes the field application of XHab including mobilization/demobilization of equipment and interaction with other rehabilitation equipment, as well as specific aspects such as initiation and termination of wrapping, protection of rehabilitated area and implementation of cathodic protection.


2010 ◽  
Vol 136 ◽  
pp. 312-315
Author(s):  
Bo Zhao

In the paper the new technology of solospun and its principle of spinning are introduced. The yarn produced in this method is better than the normal yarn with the same count. This kind of yarn has the high strength and the characteristics of high resistant to abrasion and less hairiness etc. It can improve the efficiency of single strand to weave as well as provide the advantageous conditions for developing high count, light and thin product. Technology of solospun has wide prospect for development and application.


Sign in / Sign up

Export Citation Format

Share Document