In-Field Application of Steel Strip Reinforcement for Pipeline External Rehabilitation

Author(s):  
Nicholas J. Venero ◽  
Tim J. M. Bond ◽  
Raymond N. Burke ◽  
David J. Miles

A new technology for external rehabilitation of pipelines, known as XHab™, has been developed. This method involves wrapping multiple layers of ultra-high strength steel (UHSS) strip in a helical form continuously over an extended length of pipeline using a dedicated forming and wrapping machine. The reinforcement afforded by the strip can be used to bring a defective section of pipe (e.g. externally corroded or dented) back to its original allowable operating conditions, or even to increase the allowable operating pressure if the desired operating conditions exceed the original pipeline design limits. This paper describes the design, manufacture and testing process for a self-propelled wrapping machine for in-field rehabilitation. The wrapping apparatus consists of several major components including an opening sufficiently wide to receive the pipe, a movement assembly, a winding head, a preforming device, an accumulator and an oscillating adhesive applicator. The wrapping apparatus uses the winding head to wrap the reinforcing steel strip around the pipe. The movement assembly uses a pair of tracks in contact with the pipe to drive the wrapping apparatus along which enables helical wrapping of the reinforcing strip material. The oscillating adhesive assembly applies structural adhesive to the pipe immediately before the strip is wound. The winding head, motive assembly and adhesive applicator are electronically synchronized to one another to enable precise control of pitch and adhesive volume. The paper also describes the field application of XHab including mobilization/demobilization of equipment and interaction with other rehabilitation equipment, as well as specific aspects such as initiation and termination of wrapping, protection of rehabilitated area and implementation of cathodic protection.

Author(s):  
David J. Miles ◽  
Tim J. M. Bond ◽  
Raymond N. Burke ◽  
Ruben van Schalkwijk

A new technology for external rehabilitation of pipelines, known as XHab™, has been developed. This method involves wrapping multiple layers of ultra-high strength steel strip (UHSS) in a helical form continuously over an extended length of pipeline using a dedicated forming and wrapping machine. The reinforcement afforded by the strip can be used to bring a defective section of pipe (e.g. externally corroded or dented) back to its original allowable operating conditions, or even to increase the allowable operating pressure if the desired operating conditions exceed the original pipeline design limits. This paper describes the full scale burst testing and analysis of defective pipes which have been repaired using the XHab process. The full scale test sections are 30″ × 0.5″ API 5L X52 DSAW pipe and include the following specimens: • Bare pipe with no defects; • Bare pipe with single machined defect; • Wrapped pipe with single machined defect and designed reinforcement; • Wrapped pipe with single machined defect and insufficient reinforcement; • Wrapped pipe with interacting defect array and designed reinforcement. The above full scale burst tests are supplemented by FEA models using ABAQUS. The material models for the steel pipe, UHSS strip, defect patch material and strip adhesive are based on measured data from the batch tests and tuned against the control burst test results. The structural behavior in the individual metallic and non-metallic elements can therefore be examined more closely, particularly in the region of the defect and where the wrapped strip crosses seam and girth welds.


Author(s):  
D. Michael Johnson ◽  
Peter S. Cumber ◽  
Norval Horner ◽  
Lorne Carlson ◽  
Robert Eiber

A full scale fracture propagation test facility has been developed to validate the design, in terms of the ability of the material to avert a propagating fracture, of a major new pipeline to transport gas 1800 miles from British Columbia in Canada to Chicago in the USA. The pipeline, being built by Alliance Pipeline Ltd, will transport rich natural gas, i.e. gas with a higher than normal proportion of heavier hydrocarbons, at a maximum operating pressure of 12,000 kPa. This gas mixture and pressure combination imposes a more severe requirement on the pipe steel toughness than the traditional operating conditions of North American pipelines. As these conditions were outside the validated range of models, two full-scale experiments were conducted to prove the design. This paper will provide details of the construction of the 367m long experimental facility at the BG Technology Spadeadam test site along with the key data obtained from the experiments. Evaluation of this data showed that the test program had validated Alliance’s fracture control design. The decompression data obtained in the experiments will be compared against predictions from a new decompression model developed by BG Technology. The use of the experimental facility and the model to support future developments in the pipeline industry, particularly in relation to the use of high strength steels, will also be discussed.


Author(s):  
Luyao Xu ◽  
Frank Y. Cheng

In this work, a finite element (FE) model was developed to simulate the complex stress/strain conditions potentially exerted on the northern pipelines due to the synergism of internal pressure, soil strain and local stress/strain concentration at corrosion defects. The effects of pre-strain on corrosion of the steel and the pipeline failure pressure were investigated. Results demonstrated that a high intensity stress/strain field generates preferentially at the bottom of corrosion defect. The increase of operating pressure would increase the stress concentration at defect and the plastically deformed area. Both tensile and compressive soil strains increase the stress intensity and plastic deformation. Thus, a pipe containing corrosion defects or mechanical dents is susceptible to hoop cracking or local bulking under the tensile and compressive soil strains, respectively. Moreover, while an elastic strain enhances slightly the steel corrosion, the effect of plastic strain is much remarkable. In optimal pipeline design, the reliable risk assessment of high-strength steel pipelines should consider the corrosion enhancement and defect propagation under the complex stress/strain conditions.


Author(s):  
David J. Miles

A solution, known as XHab™, has been developed for external repair and reinforcement of pipelines using ultra high strength steel strip. This method involves wrapping multiple layers of strip in a helical form continuously over an extended length of pipeline using a dedicated forming and wrapping machine. The reinforcement provided by the strip can be used to: a) Restore the original maximum allowable operating pressure to a section of defective pipe (e.g. external corrosion or denting), or b) Reinforce an intact but de-rated section of pipeline (e.g. a Location Class change through encroachment) to maintain reduced hoop stress in the base pipe as required by codes and regulations, but allow reinstatement of the original operating pressure by carrying the additional load in the strips. This paper describes the full-scale qualification testing, including in-field proving runs, and design analysis necessary to demonstrate the field-readiness of the application system and reinforcement product. This includes wrapping and pressure testing of pipe with machined external wall defects. The potential for XHab repair of stress corrosion cracking (SCC) is also discussed for an upcoming series of tests on pipe samples with electrical discharge machined notches. To demonstrate reinforcement of intact pipe, a 40ft joint of 26-inch vintage flash-butt seam welded pipe, instrumented with hoop and axial strain gages, has been wrapped by the XHab machine with sufficient reinforcement to simulate a change from Location Class 1, Div. 2 to Location Class 3 (ASME B31.8). This pipe has been subjected to pressure cycling and ultimate burst alongside an identical unwrapped pipe sample which provides a baseline. The test results are presented and compared to finite element analysis.


Alloy Digest ◽  
1978 ◽  
Vol 27 (7) ◽  

Abstract ALMAR 300 Alloy is a vacuum-melted ultra-high-strength steel. The annealed structure of this alloy is essentially a carbon-free, iron-nickel martensite (a relatively soft Rockwell C 28) that can be strengthened by cold working and elevated-temperature (900-950 F) age hardening to useful yield strengths as high as 300,000 psi. The unique properties of this alloy make it suitable for a wide range of section sizes. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-349. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
1962 ◽  
Vol 11 (5) ◽  

Abstract Crucible D6 is a low alloy ultra-high strength steel developed for aircraft-missile applications and primarily designed for use in the 260,000-290,000 psi tensile strength range. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness, creep, and fatigue. It also includes information on low temperature performance as well as forming, heat treating, machining, and joining. Filing Code: SA-129. Producer or source: Crucible Steel Company of America.


1996 ◽  
Vol 34 (9) ◽  
pp. 149-156 ◽  
Author(s):  
C. Ratanatamskul ◽  
K. Yamamoto ◽  
T. Urase ◽  
S. Ohgaki

The recent development of new generation LPRO or nanofiltration membranes have received attraction for application in the field of wastewater and water treatment through an increasingly stringent regulation for drinking purpose and water reclamation. In this research, the application on treatment of anionic pollutants (nitrate, nitrite, phosphate, sulfate and chloride ions) have been investigated as functions of transmembrane pressure, crossflow velocity and temperature under very much lower pressure operation range (0.49 to 0.03 MPa) than any other previous research used to do. Negative rejection was also observed under very much low range of operating pressure in the case of membrane type NTR-7250. Moreover, the extended Nernst-Planck model was used for analysis of the experimental data of the rejection of nitrate, nitrite and chloride ions in single solution by considering effective charged density of the membranes.


Sign in / Sign up

Export Citation Format

Share Document