Design Drivers for Offshore Wind Turbine Jacket Support Structures

Author(s):  
Andrew Cordle ◽  
Graeme McCann ◽  
Wybren de Vries

For the purposes of offshore wind turbine support structure design it is important to understand the relative importance of the various external conditions applied to the structure in the design process. This paper presents results from integrated load calculations performed for an offshore wind turbine on a jacket support structure subject to combined wind and wave loading. A sensitivity analysis is performed on a number of design load case parameters for both fatigue and extreme conditions. Damage equivalent loads and ULS loads are derived using the GH Bladed software tool at a number of key locations on the jacket. Conclusions are drawn regarding the influence of these parameters from comparisons with the baseline load set.

2019 ◽  
Vol 9 (21) ◽  
pp. 4708
Author(s):  
Shen-Haw Ju ◽  
Yu-Cheng Huang ◽  
Hsin-Hsiang Hsu

This paper investigates efficient design of offshore wind turbine (OWT) support structures under ultimate loads and proposes three schemes to overcome excessive computer time due to many required external loads. The first is the assumption of a rigid support structure to find blade wind forces, so that these forces are only dependent on wind profiles, which limits different cases in the structural analyses. Since the blade information is often confidential in turbine companies, this two-stage analysis allows the hub force to be the input data for the support structure design. The second is using a few control loads to perform the steel design between the second and the second-last design cycles. The third is using parallel computational procedures, since all loading cases can be independently executed in different CPU cores and computers. The test cases, with 5044 loading cases, indicate that the proposed method is fully parallel and can complete the design procedures using a few personal computers within several days. Test cases include IEC 61400-3, tropical cyclone, and seismic loads; although there are many loads to be considered, steel design is governed by a limited number of load cases, which are discussed in this paper.


2013 ◽  
Vol 569-570 ◽  
pp. 652-659 ◽  
Author(s):  
Gert de Sitter ◽  
Wout Weitjens ◽  
Mahmoud El-Kafafy ◽  
Christof Devriendt

This paper will show the first results of a long term monitoring campaign on an offshore wind turbine in the Belgian North Sea. It will focus on the vibration levels and resonant frequencies of the fundamental modes of the support structure. These parameters will be crucial to minimize O&M costs and to extend the lifetime of offshore wind turbine structures. For monopile foundations for example, scouring and reduction in foundation integrity over time are especially problematic because they reduce the fundamental structural resonance of the support structure, aligning that resonance frequency more closely to the lower frequencies. Since both the broadband wave energy and the rotating frequency of the turbine are contained in this low frequency band, the lower natural frequency can create resonant behavior increasing fatigue damage. Continuous monitoring of the effect of scour on the dynamics of the wind turbine will help to optimize the maintenance activities on the scour protection system. To allow a proper continuous monitoring during operation, reliable state-of-the-art operational modal analysis techniques should be used and these are presented in this paper. The methods are also automated, so that no human-interaction is required and the system can track the natural frequencies and damping ratios in a reliable manner.


Author(s):  
Emil Smilden ◽  
Erin E. Bachynski ◽  
Asgeir J. Sørensen

A simulation study is performed to identify the key contributors to lifetime accumulated fatigue damage in the support-structure of a 10 MW offshore wind turbine placed on a monopile foundation in 30 m water depth. The relative contributions to fatigue damage from wind loads, wave loads, and wind/wave misalignment are investigated through time-domain analysis combined with long-term variations in environmental conditions. Results show that wave loads are the dominating cause of fatigue damage in the support structure, and that environmental condtions associated with misalignment angle > 45° are insignificant with regard to the lifetime accumulated fatigue damage. Further, the results are used to investigate the potential of event-based use of control strategies developed to reduce fatigue loads through active load mitigation. Investigations show that a large reduction in lifetime accumulated fatigue damage is possible, enabling load mitigation only in certain situations, thus limiting collateral effects such as increased power fluctuations, and wear and tear of pitch actuators and drive-train components.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Baran Yeter ◽  
Yordan Garbatov ◽  
C. Guedes Soares

The objective of the present work is to carry out the strength assessment of jacket offshore wind turbine support structures subjected to progressive rupture. A defect existing in a structure made during the fabrication may turn into a small-scale rupture and because of the high-stress concentration and low-cycle fatigue load. Therefore, the ultimate load-carrying capacity of the support structure is analyzed accounting for the progress of the rupture until the leg component experiences a full rupture along its circumference. The effect of imperfection severity is also investigated. The moment–curvature relationship of the structure concerning the studied cases is presented. Furthermore, the jacket support structures, at different water depths, are also analyzed and discussed. Finally, some of the leg components are removed one by one to study the redundancy of the jacket support structure at 80-m water depth.


Sign in / Sign up

Export Citation Format

Share Document