Optimal Shear Key Interval for Offshore Shallow Foundations

Author(s):  
Xiaowei Feng ◽  
Susan Gourvenec

Embedment of offshore shallow foundations is typically achieved by ‘skirts’, i.e. thin vertical plates that protrude from the underside of a foundation top plate and penetrate the seabed confining a soil plug. Skirted shallow foundations are often idealized as a solid, rigid element for geotechnical analysis of the foundation, on the assumption that sufficient skirts, or ‘shear keys’ will be provided to ensure that the deformable soil plug displaces as a rigid body. Should too few shear keys be provided, failure mechanisms involving deformation within the soil plug may occur, leading to a reduction in load-carrying capacity. There is currently no formal guidance regarding the optimal spacing of shear keys to ensure rigid body displacement of the soil plug. The absence of guidance may lead to unconservative designs if the number of shear keys is under estimated to save on fabrication or to conservative designs if additional shear keys are provided to minimize the risk associated with the uncertainty. Either case is undesirable and clear benefit is to be gained from a better understanding of shear key spacing. This paper presents guidance on the minimum number of shear keys required to achieve optimal capacity of square and rectangular skirted foundations (i.e. equivalent to that of a solid rigid foundation) under undrained generalized six degree-of-freedom loading in soft soils with linearly increasing shear strength with depth.

2003 ◽  
Vol 331 (1) ◽  
pp. 281-299 ◽  
Author(s):  
Jeffrey J. Gray ◽  
Stewart Moughon ◽  
Chu Wang ◽  
Ora Schueler-Furman ◽  
Brian Kuhlman ◽  
...  

Author(s):  
A Daadbin ◽  
K S H Sadek

Mechanisms form the basic geometrical elements of many mechanical devices including automatic packaging machinery, typewriters, textile and printing machinery, and others. A mechanism typically is designed to create a desired motion of a rigid body relative to a reference member by the help of gears, cam systems or spatial linkages. In flow pack machines a tube of wrapper containing the products moves with a uniform velocity, while the reciprocating heads move forward and backwards sealing different products. In an existing machine, these motions are produced by a rather complex mechanism involving cams and adjustable links. The paper suggests replacing these cams by a suitable quick-return mechanism with a minimum number of adjustable links. The dimensions of this mechanism are optimized such that the motions produced are as near as possible to those obtained by the original cam mechanisms. The simplification can result in reduction in the mass of different components and existing forces in the mechanism.


2002 ◽  
Vol 82 (8) ◽  
pp. 1573-1594
Author(s):  
Geoffrey H. Campbell ◽  
Mukul Kumar ◽  
Wayne E. King ◽  
James Belak ◽  
John A. Moriarty ◽  
...  

2012 ◽  
Vol 184-185 ◽  
pp. 80-85
Author(s):  
Zhi Qiang Lv ◽  
Wei Xu ◽  
Chang Geng Shuai

Integrated raft isolation system (IRIS) has some advantages over raft system of much smaller scale, such as higher isolation efficiency, less use of elastic couplings, etc. But the calculation of IRIS’s dynamic characteristics is complex. Finite element method usually adopted by raft designers is inefficient due to the iterative nature of design process. In this paper a six-degree-of-freedom rigid-body motion model is presented to calculate the static,quasi-static and rigid-body mode behavior of IRIS. The model is especially suitable to compare different design schemes and select out feasible ones efficiently at the initial design stage of IRIS.


Author(s):  
Brian M. Korte ◽  
Andrew P. Murray ◽  
James P. Schmiedeler

This paper presents a procedure to synthesize planar linkages, composed of rigid links and revolute joints, capable of approximating a shape change defined by a set of curves. These “morphing curves” differ from each other by a combination of rigid-body displacement and shape change. Rigid link geometry is determined through analysis of piecewise linear curves to achieve shape-change approximation, and increasing the number of links improves the approximation. A mechanism is determined through connecting the rigid links into a single chain and adding dyads to eliminate degrees of freedom. The procedure is applied to two open-chain examples.


Sign in / Sign up

Export Citation Format

Share Document