Wave Diffraction Forces on Offshore Wind Turbine Piles With an Octagonal Cross Section

Author(s):  
Serena Lim ◽  
Longbin Tao

Traditional offshore wind turbines are normally supported by circular monopiles which are fabricated by rolling thick plates and welding them longitudinally. Due to the significant capital cost associated with the fabrication of such large circular cylinders, a new recommended innovative design to overcome such problem is introduced by replacing the circular cylinder with a vertical pile of octagonal cross-sectional shape. An efficient and very accurate semi-analytical/numerical solution based on the Scaled Boundary Finite Element Method (SBFEM) is developed to calculate the wave diffraction forces acting on the octagonal cylinders where no fundamental solutions known exist. Compared to the traditional Boundary Element Method (BEM), the SBFEM is free from the irregular frequency difficulty which means that it does not suffer from computational stability problems at sharp corners. The SBFEM solution also exhibits an enormous reduction of elements used to calculate the wave diffraction compared to the Finite Element Method (FEM), hence, a significant reduction in computational time. The SBFEM computation of the diffraction force demonstrates highly accurate results with a small number of surface elements. The presented method shows significant advantages, and is suitable for engineering applications especially the wave-structure interaction in the practical design.

Author(s):  
Serena Lim ◽  
Longbin Tao

Offshore wind energy development has gained considerable momentum around the world as wind is stronger and steadier offshore compared to land. This has led to a significant increase in production in recent years, especially offshore wind turbine embedded in shallow waters, such as the recent large scale offshore wind farms in the Northern Europe region. Being at the offshore waters, the wind turbines are subjected to harsh environment. The pile supporting the wind turbine must be reliable and able to withstand such sea condition. It is an important part of the design to study the structural behaviour of the piles under the wave loads. Due to the significant capital cost associated with the fabrication of the large circular cylinders, a new recommended innovative design to overcome such problem is to substitute the circular cylinder with a vertical monopile of octagonal cross-sectional shape. This paper describes the development of an efficient numerical model for structural analysis of wave interaction with octagonal pile using a modified semi analytical Scaled Boundary Finite Element Method (SBFEM). In contrast to the existing solutions obtained using the traditional methods such as the Finite Element Method (FEM) which typically suffer from high computational cost and the Boundary Element Method (BEM) which faces limitation from fundamental equations and problems with singularities. The most prominent advantage that SBFEM has over the FEM is in terms of the number of elements used for calculation and hence a reduction in computational time. When compared with BEM, the SBFEM does not suffer from computational stability problems.


2014 ◽  
Vol 1040 ◽  
pp. 664-669 ◽  
Author(s):  
Pavel A. Akimov ◽  
Alexandr M. Belostosky ◽  
Marina L. Mozgaleva ◽  
Mojtaba Aslami ◽  
Oleg A. Negrozov

The distinctive paper is devoted to correct multilevel discrete-continual finite element method (DCFEM) of structural analysis based on precise analytical solutions of resulting multipoint boundary problems for systems of ordinary differential equations with piecewise-constant coefficients. Corresponding semianalytical (discrete-continual) formulations are contemporary mathematical models which currently becoming available for computer realization. Major peculiarities of DCFEM include universality, computer-oriented algorithm involving theory of distributions, computational stability, optimal conditionality of resulting systems and partial Jordan decompositions of matrices of coefficients, eliminating necessity of calculation of root vectors.


Author(s):  
Lei Wang ◽  
Jian Li ◽  
Pengzhan Huang

Purpose This paper aims to propose a new highly efficient iterative method based on classical Oseen iteration for the natural convection equations. Design/methodology/approach First, the authors solve the problem by the Oseen iterative scheme based on finite element method, then use the error correction strategy to control the error arising. Findings The new iterative method not only retains the advantage of the Oseen scheme but also saves computational time and iterative step for solving the considered problem. Originality/value In this work, the authors introduce a new iterative method to solve the natural convection equations. The new algorithm consists of the Oseen scheme and the error correction which can control the errors from the iterative step arising for solving the nonlinear problem. Comparing with the classical iterative method, the new scheme requires less iterations and is also capable of solving the natural convection problem at higher Rayleigh number.


Sign in / Sign up

Export Citation Format

Share Document