Large Deformation Finite Element Analysis of the Anchor Line Embedded in Seabed Soils

Author(s):  
Yanbing Zhao ◽  
Haixiao Liu

For most anchors in offshore engineering, such as the anchor pile and the drag anchor, the attachment point will generally be significantly below the seafloor surface, and therefore a portion of the anchor line will be deeply embedded in seabed soils. Complicated interaction happens between the anchor and the embedded anchor line, and the tension at the attachment point and the reverse catenary shape of embedded anchor line play a key role in assessing the capacity and reliability of the anchorage system. Previous investigations on the force distribution and the reverse catenary shape of embedded anchor line involve numerical incremental methods, closed-form theoretical expressions and laboratory tests. In the present work, a large deformation finite element analysis using the Coupled Eulerian-Lagrangian technique is developed to investigate the tension and profile of embedded anchor line. Parametric studies are performed to evaluate the effects of the shear strength of clay, depth of attachment point, diameter of embedded anchor line, self weight of soil, self weight of anchor line, and frictional coefficient between the embedded anchor line and soil. By comparing with theoretical and numerical integration solutions, the FEM simulation results are well verified. The present study demonstrates that the CEL technique is effective for simulating the anchor line-soil interactional problems.

2021 ◽  
Vol 11 (13) ◽  
pp. 6094
Author(s):  
Hubdar Hussain ◽  
Xiangyu Gao ◽  
Anqi Shi

In this study, detailed finite element analysis was conducted to examine the seismic performance of square and circular hollow steel braces under axial cyclic loading. Finite element models of braces were constructed using ABAQUS finite element analysis (FEA) software and validated with experimental results from previous papers to expand the specimen’s matrix. The influences of cross-section shape, slenderness ratio, and width/diameter-to-thickness ratio on hysteretic behavior and compressive-tensile strength degradation were studied. Simulation results of parametric studies show that both square and circular hollow braces have a better cyclic performance with smaller slenderness and width/diameter-to-thickness ratios, and their compressive-tensile resistances ratio significantly decreases from cycle to cycle after the occurrence of the global buckling of braces.


2014 ◽  
Vol 970 ◽  
pp. 177-184 ◽  
Author(s):  
Wen Chiet Cheong ◽  
Heng Keong Kam ◽  
Chan Chin Wang ◽  
Ying Pio Lim

A computational technique of rigid-plastic finite element method by using the Eulerian meshing method was developed to deal with large deformation problem in metal forming by replacing the conventional way of applying complicated remeshing schemes when using the Lagrange’s elements. During metal forming process, a workpiece normally undergoes large deformation and causes severe distortion of elements in finite element analysis. The distorted element may lead to instability in numerical calculation and divergence of non-linear solution in finite element analysis. With Eulerian elements, the initial elements are generated to fix into a specified analytical region with particles implanted as markers to form the body of a workpiece. The particles are allowed to flow between the elements after each deformation step to show the deforming pattern of material. Four types of cold forging and sheet metal clinching were conducted to investigate the effectiveness of the presented method. The proposed method is found to be effective by comparing the results on dimension of the final product, material flow behaviour and punch load versus stroke obtained from simulation and experiment.


2010 ◽  
Vol 159 ◽  
pp. 697-702
Author(s):  
Ying Zhou ◽  
Ya Xi Tan

A three-dimensional coupled fluid-thermal finite element simulation model has been developed to provide analyzing distribution of velocity and temperature of nine-spacer nozzle by using FEM simulation of FLOTRAN module in ANSYS 6.0. To explore fluid-thermal analysis of the flow fields of nine-spacer nozzle of aluminum roll-casting, stricter analysis of postprocessing result was conducted by MATLAB. It was concluded that flow field of nine-spacer nozzle was able to match cooling capacity of cast rollers, but nine-spacer nozzle’s geometric flaw didn’t suit for working in the case of speed increasing of the drawing-sheet and thickness reducing of the aluminium sheet during roll casting.


Sign in / Sign up

Export Citation Format

Share Document