scholarly journals Summary of Conclusions and Recommendations Drawn From the DeepCwind Scaled Floating Offshore Wind System Test Campaign

Author(s):  
Amy N. Robertson ◽  
Jason M. Jonkman ◽  
Andrew J. Goupee ◽  
Alexander J. Coulling ◽  
Ian Prowell ◽  
...  

The DeepCwind consortium is a group of universities, national labs, and companies funded under a research initiative by the U.S. Department of Energy (DOE) to support the research and development of floating offshore wind power. The two main objectives of the project are to better understand the complex dynamic behavior of floating offshore wind systems and to create experimental data for use in validating the tools used in modeling these systems. In support of these objectives, the DeepCwind consortium conducted a model test campaign in 2011 of three generic floating wind systems: a tension-leg platform (TLP), a spar-buoy (spar), and a semi-submersible (semi). Each of the three platforms was designed to support a 1/50th-scale model of a 5-MW wind turbine and was tested under a variety of wind/wave conditions. The focus of this paper is to summarize the work done by consortium members in analyzing the data obtained from the test campaign and its use for validating the offshore wind modeling tool, FAST.

2020 ◽  
Vol 54 (6) ◽  
pp. 37-43
Author(s):  
Alicia M. Gorton ◽  
Will J. Shaw

AbstractAs countries continue to implement sustainable and renewable energy goals, the need for affordable low-carbon technologies, including those related to offshore wind energy, is accelerating. The U.S. federal government recognizes the environmental and economic benefits of offshore wind development and is taking the necessary steps to overcome critical challenges facing the industry to realize these benefits. The U.S. Department of Energy (DOE) is investing in buoy-mounted lidar systems to facilitate offshore measurement campaigns that will advance our understanding of the offshore environment and provide the observational data needed for model validation, particularly at hub height where offshore observations are particularly lacking. On behalf of the DOE, the Pacific Northwest National Laboratory manages a Lidar Buoy Program that facilitates meteorological and oceanographic data collection using validated methods to support the U.S. offshore wind industry. Since being acquired in 2014, two DOE lidar buoys have been deployed on the U.S. east and west coasts, and their data represent the first publicly available multi-seasonal hub height data to be collected in U.S. waters. In addition, the buoys have undergone performance testing, significant upgrades, and a lidar validation campaign to ensure the accuracy and reliability of the lidar data needed to support wind resource characterization and model validation (the lidars were validated against a reference lidar installed on the Air-Sea Interaction Tower operated by the Woods Hole Oceanographic Institution). The Lidar Buoy Program is providing valuable offshore data to the wind energy community, while focusing data collection on areas of acknowledged high priority.


2012 ◽  
Vol 43 ◽  
pp. 224-233 ◽  
Author(s):  
Blaise Sheridan ◽  
Scott D. Baker ◽  
Nathaniel S. Pearre ◽  
Jeremy Firestone ◽  
Willett Kempton

2020 ◽  
Vol 2 (3) ◽  
pp. 311-332
Author(s):  
Amirhossein Sajadi ◽  
Kara Clark ◽  
Kenneth A. Loparo

This paper presents a statistical steady-state stability analysis for transmission system planning studies in order to identify operational issues inherent in the integration of offshore wind power plants. It includes normal and contingency operation. This study considers the integration of a 1000-MW offshore wind power plant into the FirstEnergy/PJM service territory in the U.S. Great Lakes region as a case study and uses a realistic computer model of the U.S. Eastern Interconnection, a 63,000-bus test system. The results show the utility of this statistical analysis tool and its effectiveness in identification of the operational impacts as a result of the integration of offshore wind power plant.


2017 ◽  
Vol 103 ◽  
pp. 346-360 ◽  
Author(s):  
C.L. Archer ◽  
H.P. Simão ◽  
W. Kempton ◽  
W.B. Powell ◽  
M.J. Dvorak

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Shih-Ang Hsu ◽  

In order to improve offshore wind power operation and maintenance (O&M), particularly during tropical and non-tropical cyclones, short-term forecasts or nowcasts up to 6 hours of meteorological and oceanographic (met-ocean) parameters including wind, waves, currents and turbulence intensity are needed. On the basis of numerous air-sea and wind-wave interaction experiments, datasets are analyzed including those from simultaneous measurements of wind and waves during Hurricane Wilma. Formulas are presented for nowcasts of met-ocean parameters. For quality assurance, these proposed formulas are further verified by independent datasets as provided in the literature. This manual-like guide should be useful for offshore wind-power O&M technicians and operators.


Sign in / Sign up

Export Citation Format

Share Document