Assessment of Capacity of Grouted Connections in Piled Jacket Structures

Author(s):  
Inge Lotsberg ◽  
Gunnar Solland

The design of the grouted connections in jacket structures has until recently been based on a control of capacity with respect to axial force in the pile while the effect of the bending moment has been neglected, ref. ISO 19902 (2007). In later design of grouted connections it is observed that the moments in the piles can contribute to more than two times larger stress in the pile than that due to axial load only. A significant moment can hardly be transferred from the pile to the sleeve without sliding of the steel against the grout. This sliding is considered to increase with increasing diameter of the pile. Therefore it is difficult to develop design criteria based on small scale testing. The contact pressure between grout and steel will lead to compressive and tensile stresses in the grout. This requires design criteria for compressive stress and tensile stress in the grout. ISO 19902 do not require fatigue assessment of grouted connections subjected to wave loading. This was based on a review and assessment of jackets present in the Lloyds database at the time the design formulation was developed. It was assessed that fatigue assessment was not required as long as design was performed with respect to the Ultimate Limit State. However, it is now judged that fatigue is important for jackets with significant dynamic load that exceeds the axial and bending moment from permanent loads. A review of design standards for grouted connections in jacket structures has shown that there is a need for more relevant test data and revisions of these standards such as ISO 19902 in order to assure reliable design with respect to all potential failure modes.

1989 ◽  
Vol 16 (2) ◽  
pp. 124-139 ◽  
Author(s):  
Robert G. Driver ◽  
D. J. Laurie Kennedy

Design standards provide little information for the design of I-shaped steel beams not loaded through the shear centre and therefore subjected to combined flexure and torsion. In particular, methods for determining the ultimate capacity, as is required in limit states design standards, are not presented. The literature on elastic analysis is extensive, but only limited experimental and analytical work has been conducted in the inelastic region. No comprehensive design procedures, applicable to limit states design standards, have been developed.From four tests conducted on cantilever beams, with varying moment–torque ratios, it is established that the torsional behaviour has two distinct phases, with the second dominated by second-order geometric effects. This second phase is nonutilizable because the added torsional restraint developed is path dependent and, if deflections had been restricted, would not have been significant. Based on the first-phase behaviour, a normal and shearing stress distribution on the cross section is proposed. From this, a moment–torque ultimate strength interaction diagram is developed, applicable to a number of different end and loading conditions. This ultimate limit state interaction diagram and serviceability limit states, based on first yield and on distortion limitations, provide a comprehensive design approach for these members. Key words: beams, bending moment, flexure, inelastic, interaction diagram, I-shaped, limit states, serviceability, steel, torsion, torque, ultimate.


Author(s):  
Mohamed S. Abu-Yosef ◽  
Ezzeldin Y. Sayed-Ahmed ◽  
Emam A. Soliman

Steel connections transferring axial and shear forces in addition to bending moment and/or torsional moment are widely used in steel structures. Thus, design of such eccentric connections has become the focal point of any researches. Nonetheless, behavior of eccentric connections subjected to shear forces and torsion in the ultimate limit state is still ambiguous. Most design codes of practice still conservatively use the common elastic analysis for design of the said connections even in the ultimate limit states. Yet, there are some exceptions such as the design method proposed by CAN/CSA-S16-14 which gives tabulated design aid for the ultimate limit state design of these connections based on an empirical equation that is derived for ¾ inch diameter A325 bearing type bolts and A36 steel plates. It was argued that results can also be used with a margin of error for other grade bolts of different sizes and steel of other grades. As such, in this paper, the performance of bolted connection subject to shear and torsion is experimentally investigated. The behavior, failure modes and factors affecting both are scrutinized. Twelve connections subject to shear and torsion with different bolts configurations and diameters are experimentally tested to failure. The accuracy of the currently available design equations proposed is compared to the outcomes of these tests.


1996 ◽  
Vol 33 (5) ◽  
pp. 815-821 ◽  
Author(s):  
A B Schriver ◽  
A J Valsangkar

Recently, the limit states approach using factored strength has been recommended in geotechnical design. Some recent research has indicated that the application of limit states design using recommended load and strength factors leads to conservative designs compared with the conventional methods. In this study the influence of sheet pile wall geometry, type of water pressure distribution, and different methods of analysis on the maximum bending moment and achor rod force are presented. Recommendations are made to make the factored strength design compatible with conventional design. Key words: factored strength, working stress design, ultimate limit state design, anchored sheet pile wall, bending moment, anchor rod force.


Author(s):  
Jeroen Van Wittenberghe ◽  
Philippe Thibaux ◽  
Maarten Van Poucke

Abstract Offshore wind turbines are being installed in deeper water and with more powerful generators resulting in more severe loading conditions on its foundations such as jacket structures. Because the main loading is due to wind and currents, the dominant design limit state is fatigue. The fatigue performance of the tubular joints used in jacket structures has been assessed several decades ago based on test results with limited component dimensions (diameter and wall thickness). In addition, improvements of welding methods and evolution of steel grades are not considered in the current design standards. To provide experimental fatigue-life data on large-scale structures a test program has been carried out on 4 welded tubular X-joints. Each X-joint consists of two horizontal braces with a diameter of 711 mm welded to a central vertical tubular member with 806 mm diameter. The X-joint has a total length of 7.5 m and has two identical welds that are fatigue tested. The fatigue tests are carried out on an innovative resonant bending fatigue test rig that allows to load the specimen in in- and out-of-plane direction at a different amplitude to obtain an even stress distribution over the circumference of the welds. The tests are carried out at a speed close to the resonance frequency of the X-joint. During the test, hotspot strains are measured using strain gauges and a limited amount of water pressure is used to detect through-thickness cracks. The tests are carried out in two phases. During the crack initiation phase, the sample is loaded in both the in- and out-of-plane mode. Once cracks are detected, the test is continued in the crack propagation phase with loading in the plane where cracks had been initiated until through-thickness cracking appeared. During this phase the beach marking technique has been used to mark the shape of the fracture surface at different moments during the fatigue tests. The testing program is part of the RFCS project JABACO that aims to reduce offshore wind cost by incrementing prefabrication of the jacket substructure.


2013 ◽  
Vol 569-570 ◽  
pp. 294-301
Author(s):  
Caterina Negulescu ◽  
Kushan K. Wijesundara ◽  
Evelyne Foerster

During the past earthquakes, different low ductile failure modes are observed in the gravity design structures and thus, the most of existing damage indices may fail to assess the damage of gravity design structures accurately in referring to the two main performance levels: immediate occupancy and ultimate limit state. Therefore, this study investigates the possible damage indices for the damage assessment of gravity design frames. For this purpose, among the existing damage indices in the literature, this study considers the inter-story drift and the natural period based damage indices. In addition, two new damage indices based on the wavelet based energy and the dominant inelastic period of a building are also considered in this study. Furthermore, the damage assessment results from the four damage indices for three gravity design buildings are compared and discussed. From the comparison, linear correlations between the inter-storey drift based damage index and the wavelet energy based index, and dominant inelastic period based damage index are observed. Finally, this study concludes based on the observations that no significant effects of number of inelastic cycles to the damage assessment results for low ductile structures. However, this study also highlights the effects of number of inelastic cycles to the damage for medium and high ductile structures.


Author(s):  
Jeom Kee Paik ◽  
Bong Ju Kim ◽  
Jung Kwan Seo

The aim of the present paper is to evaluate the ultimate limit state performance of an AFRAMAX-class hypothetical double hull oil tanker structure designed by IACS CSR (Common Structural Rules) method, compared with the same-class/type tanker structure designed by IACS pre-CSR method. The ultimate strengths of stiffened plate structures in deck and bottom parts under combined in-plane and out-of-plane actions, and hull girder against vertical bending moment, are computed for the two designs, and the resulting computations are compared. ALPS/ULSAP program is used for the ultimate limit state assessment of stiffened plate structures, while ALPS/HULL program is employed for the progressive hull collapse analysis. ANSYS nonlinear FEA method, which uses more refined technology, is also used for the same purpose. The insights and developments obtained from the present study are addressed.


Author(s):  
Igor Del Gaudio Orlando ◽  
Túlio Nogueira Bittencourt ◽  
Leila Cristina Meneghetti

abstract: This work deals with the evaluation of the design criteria and security check (Ultimate Limit State - ULS) of the American (ACI-440.2R, 2017) and European (FIB Model Code, 2010) standards of reinforced concrete structures strengthened with Carbon Fiber Reinforced Polymers (CFRP), by the technique of Externally Bonded Reinforcement (EBR). It is intended to evaluate if, for a given database of 64 experimental tests of beams and slabs, the obtained results respect the safety conditions according to the mentioned standards, to increase the efficiency of this reinforcement technique and to lead to the establishment of regulatory design criteria in Brazil. Results show a conservative match among experimental and theoretical values calculated according to the two guidelines and it is concluded that a future regulation in Brazil on this subject should be based on the FIB Model Code.


2021 ◽  
Vol 11 (1) ◽  
pp. 6708-6713
Author(s):  
H. Benzeguir ◽  
S. M. Elachachi ◽  
D. Nedjar ◽  
M. Bensafi

Dysfunctions and failures of buried pipe networks, like sewer networks, are studied in this paper from the point of view of structural reliability and heterogeneity of geotechnical conditions in the longitudinal direction. Combined soil spatial variability and Peak Ground Acceleration (PGA) induce stresses and displacements. A model has been developed within the frame of geostatistics and a mechanical description of the soil–structure interaction of a set of buried pipes with connections resting on the soil by a two-parameter model (Pasternak model). Structural reliability analysis is performed considering two limit states: Serviceability Limit State (SLS), related to large "counter slope" in a given pipe, and Ultimate Limit State (ULS), corresponding to bending moment.


2019 ◽  
Vol 8 (4) ◽  
pp. 6484-6489

Composites are not isotropic like their metal counterparts, e.g. steel and aluminum, as they are made of two distinctive phases known as the matrix and the reinforcing phases. In addition, weight, fiber direction, fiber composition and even the manufacturing process are all critical factors in determining the strength, stiffness and the behaviour of a composite member. All of that create more challenging designing and manufacturing approaches. This paper shows how to model a GFRP cross arm using SOLIDWORKS to create the 3D geometrical model because it has an intuitive and easy to use user interface, and ANSYS to create the numerical model and the analysis for its great and comprehensive capabilities in the finite element analysis. The cross arm was found to be safe against the failure modes of fiber, matrix, in-plane shear, out-of-plane shear and delamination under all load cases which satisfies the ultimate limit state requirements but the concern was on the serviceability limit state which had a deflection of 34 mm.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Albert Ku ◽  
Jieyan Chen

Abstract Conical transitions have wide applications in wind turbine foundation as well as oil and gas jacket type of structures. The junctions where tubular and cone meet experience a sharp stress rise from shell edge effects. Like all structures experiencing sharp stress rises, fatigue considerations are critical. In addition to fatigue, the existing offshore structural design standards also require ultimate limit state checks. It is known from the lower bound theorem of plasticity limit analysis that the junction local edge effects do not impact the global capacity. Designing for the local junction ultimate limit state contains wide variations among existing design standards. In this paper, the design practices from API RP-2A, NORSOK N-004, and ISO 19902:2020 draft are assessed. They are compared to the shell plastic yield criteria of Hodge and Ilyushin. In addition, this paper provides a semi-analytical plasticity solution to determine junction plastic deformations. The formulation is based on cylindrical shell equations coupled with deformation plasticity theory. It is found that the growth of the junction plasticity zone is limited, which is consistent with the anticipation from the lower bound limit analysis theorem. The observations made in this paper show that the local junction plasticity is a secondary issue compared to other design considerations. Its ultimate limit state design equation can afford to be more lenient if chooses for future standards’ development.


Sign in / Sign up

Export Citation Format

Share Document