Semi-Coupled Scheme for the Analysis of Floating Production Systems

Author(s):  
Fabrício Nogueira Corrêa ◽  
Breno Pinheiro Jacob

Traditionally, the design practice of floating production systems (FPS) employed uncoupled numerical tools where firstly the hydrodynamic analysis of the hull is performed with the lines represented by scalar models (leading to the hull motions); subsequently, these motions are prescribed at Finite Element (FE) models of the lines. Nowadays, it is widely acknowledged that coupled analysis tools should be employed for deep-water applications, considering that the overall behavior is dictated by the interaction between the hydrodynamic behavior of the hull and the structural behavior of the lines. In this context, considering that in some situations the use of coupled formulations can lead to excessive computing times, this work presents a formulation for the analysis of FPS, referred here as the semi-coupled (S-C) strategy. Its goal is to attain faster simulations than a coupled formulation, with better accuracy than usually provided by the classical uncoupled scheme. In this strategy, for each load case a coupled static simulation is performed. From this simulation a global 6-DOF stiffness matrix that represents the array of lines is automatically calculated and added to the global matrix for the subsequent dynamic analysis to solve the equations of motion of the hull. Therefore, this dynamic analysis will adequately consider the nonlinear stiffness contribution of the lines, as well as the effect of the current profile acting on them, all evaluated at the static mean position for each load case. Case studies are presented to compare the computational costs and accuracy of this S-C strategy with coupled formulations.

Author(s):  
Aldo Roberto Cruces Giron ◽  
William Steven Mendez Rodriguez ◽  
Fabrício Nogueira Correa ◽  
Breno P Jacob

Abstract This work presents an enhanced hybrid methodology for the analysis and design of floating production systems (FPS). The semi-coupled (S-C) procedure exploits advantages of coupled and uncoupled models, incorporated into a three-stage sequence of analyses that can be fully automated within a single analysis program, presenting striking reductions of computational costs. The procedure begins by determining, through a full nonlinear static coupled analysis, the mean equilibrium position of the FPS with its mooring lines and risers. Then, it automatically evaluates equivalent 6-DOF stiffness matrices and force vectors representing the whole array of lines. Finally, these matrices/vectors are transferred to the dynamic analysis, solving the global 6-DOF equations of motion restarted from the static equilibrium position. This way, the S-C methodology represents all non-linear effects associated to the lines and consider their influence on the dynamic behavior of the hull. However, in some situations it could still overestimate dynamic amplitudes of LF motions, and/or underestimate amplitudes of line tensions. Thus, to improve the overall accuracy, enhanced procedures are incorporated to better represent damping and inertial contribution of the lines. Results of case studies confirm that this methodology provides results adequate for preliminary or intermediary design stages.


Author(s):  
Aldo Roberto Cruces Girón ◽  
Fabrício Nogueira Corrêa ◽  
Breno Pinheiro Jacob

Analysis techniques and numerical formulations are available in a variety for mooring and riser designers. They are applied in the different stages of the design processes of floating production systems (FPS) by taking advantage of both the accuracy of results and the computational costs. In early design stages, the low computational cost is more valued with the aim of obtaining fast results and taking decisions. So in these stages it is common to use uncoupled analysis. On the other hand, in more advanced design stages, the accuracy of results is more valued, for which the use of coupled analysis is adequate. However, it can lead to excessive computing times. To overcome such high computational costs, new formulations have been proposed with the aim of obtaining results similar to a coupled analysis, but with low computational costs. One of these formulations is referred as the semi-coupled scheme (S-C). Its main characteristic is that it combines the advantages of uncoupled and coupled analysis techniques. In this way, analyses can be performed with very fast execution times and results are superior to those obtained by the classical uncoupled analysis. This work presents an evaluation of the S-C scheme. The evaluation is made by comparing their results with the results of coupled analyses. Both type of analysis were applied in a representative deep water platform. The results show that the S-C scheme have the potentially to provide results with appropriate precision with very low computational times. In this way, the S-C scheme represents an attractive procedure to be applied in early and intermediate stages of the design process of FPS.


Author(s):  
Aldo Roberto Cruces Girón ◽  
Fabricio Nogueira Corrêa ◽  
Breno Pinheiro Jacob ◽  
Stael Ferreira Senra

Nowadays, coupled analysis tools that allow the simultaneous modelling of the hydrodynamic behaviour of the hull and the structural behaviour of the lines of floating production platforms have been increasingly used. The use of such tools is gradually allowing the introduction of some feedback between the design of risers and mooring systems. In the current practice, that comprises the so-called “hybrid” methodologies, mooring designers have been using these tools to consider the influence of the risers on the platform motions. On the other hand, riser designers can use motions that result from coupled simulations for the analysis of each riser. Such integration is already being implemented in the design practice of Petrobras; however, elsewhere the design of risers and mooring systems may still be performed separately, by different teams, therefore not fully exploiting the benefits that the coupled analysis tools can provide. In this context, this work describes an innovative, fully integrated methodology for the design of mooring systems and risers of floating production systems (FPS). This methodology considers different design stages (from preliminary to advanced), integrating the design activities of mooring lines and risers in a single spiral, allowing gains in efficiency and cost reduction. The initial design stages already include a feedback between riser and mooring analyses. The integrity of the risers can be considered in the mooring design by determining their safe operational zones, and therefore, mooring line pretensions can be modified to improve its structural performance. Then, in advanced stages critical design cases for both mooring and risers systems can be identified and rigorously verified by using fully coupled models. The application of the proposed methodology is illustrated with a case study of a typical FPS, representative of the platforms that have been recently considered for deepwater applications. It should be stressed that the methodology described here does not reflect the current design practice of Petrobras. Presently it is merely a proposal that is being studied and assessed; this work comprises the first draft of the methodology, which will be enhanced and consolidated as the result of current and future studies.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Haiming Yuan ◽  
Xian-Hui Ge

Abstract The “pole-skipping” phenomenon reflects that the retarded Green’s function is not unique at a pole-skipping point in momentum space (ω, k). We explore the universality of pole-skipping in different geometries. In holography, near horizon analysis of the bulk equation of motion is a more straightforward way to derive a pole-skipping point. We use this method in Lifshitz, AdS2 and Rindler geometries. We also study the complex hydrodynamic analyses and find that the dispersion relations in terms of dimensionless variables $$ \frac{\omega }{2\pi T} $$ ω 2 πT and $$ \frac{\left|k\right|}{2\pi T} $$ k 2 πT pass through pole-skipping points $$ \left(\frac{\omega_n}{2\pi T},\frac{\left|{k}_n\right|}{2\pi T}\right) $$ ω n 2 πT k n 2 πT at small ω and k in the Lifshitz background. We verify that the position of the pole-skipping points does not depend on the standard quantization or alternative quantization of the boundary theory in AdS2× ℝd−1 geometry. In the Rindler geometry, we cannot find the corresponding Green’s function to calculate pole-skipping points because it is difficult to impose the boundary condition. However, we can still obtain “special points” near the horizon where bulk equations of motion have two incoming solutions. These “special points” correspond to the nonuniqueness of the Green’s function in physical meaning from the perspective of holography.


2018 ◽  
Vol 18 (02) ◽  
pp. 1850017 ◽  
Author(s):  
Iwona Adamiec-Wójcik ◽  
Łukasz Drąg ◽  
Stanisław Wojciech

The static and dynamic analysis of slender systems, which in this paper comprise lines and flexible links of manipulators, requires large deformations to be taken into consideration. This paper presents a modification of the rigid finite element method which enables modeling of such systems to include bending, torsional and longitudinal flexibility. In the formulation used, the elements into which the link is divided have seven DOFs. These describe the position of a chosen point, the extension of the element, and its orientation by means of the Euler angles Z[Formula: see text]Y[Formula: see text]X[Formula: see text]. Elements are connected by means of geometrical constraint equations. A compact algorithm for formulating and integrating the equations of motion is given. Models and programs are verified by comparing the results to those obtained by analytical solution and those from the finite element method. Finally, they are used to solve a benchmark problem encountered in nonlinear dynamic analysis of multibody systems.


Author(s):  
Junghsen Lieh ◽  
Imtiaz Haque

Abstract Modeling and dynamic analysis of a slider-crank mechanism with flexible joint and coupler is presented. The equations of motion of the mechanism model are formulated using a virtual work multibody formalism and cast in terms of a minimum set of generalized coordinates through a Jacobian matrix expansion. Numerical results show the influence of time-varying coefficients on the mechanism dynamic behavior due to a repeated task. The results illustrate that the joint motion and coupler deformation are highly coupled. The joint response is dominated by double frequency of input, however, the coupler deformation is influenced by the same frequency as that of excitation. Increase in joint stiffness tends to decrease the variations in coupler deformation.


Author(s):  
Sung-Soo Kim ◽  
Jeffrey S. Freeman

Abstract This paper details a constant stepsize, multirate integration scheme which has been proposed for multibody dynamic analysis. An Adams-Bashforth Moulton integration algorithm has been implemented, using the Nordsieck form to store internal integrator information, for multirate integration. A multibody system has been decomposed into several subsystems, treating inertia coupling effects of subsystem equations of motion as the inertia forces. To each subsystem, different rate Nordsieck form of Adams integrator has been applied to solve subsystem equations of motion. Higher order derivative information from the integrator provides approximation of inertia force computation in the decomposed subsystem equations of motion. To show the effectiveness of the scheme, simulations of a vehicle multibody system that consists of high frequency suspension motion and low frequency chassis motion have been carried out with different tire excitation forces. Efficiency of the proposed scheme has been also investigated.


2018 ◽  
Vol 180 ◽  
pp. 01005 ◽  
Author(s):  
Andrzej Wilk

Transmission of electrical energy from a catenary system to traction units must be safe and reliable especially for high speed trains. Modern pantographs have to meet these requirements. Pantographs are subjected to several forces acting on their structural elements. These forces come from pantograph drive, inertia forces, aerodynamic effects, vibration of traction units etc. Modern approach to static and dynamic analysis should take into account: mass distribution of particular parts, physical properties of used materials, kinematic joints character at mechanical nodes, nonlinear parameters of kinematic joints, defining different parametric waveforms of forces and torques, and numerical dynamic simulation coupled with FEM calculations. In this work methods for the formulation of the governing equations of motion are presented. Some of these methods are more suitable for automated computer implementation. The novel computer methods recommended for static and dynamic analysis of pantographs are presented. Possibilities of dynamic analysis using CAD and CAE computer software are described. Original results are also presented. Conclusions related to dynamic properties of pantographs are included. Chapter 2 presents the methods used for formulation of the equation of pantograph motion. Chapter 3 is devoted to modelling of forces in multibody systems. In chapter 4 the selected computer tools for dynamic analysis are described. Chapter 5 shows the possibility of FEM analysis coupled with dynamic simulation. In chapter 6 the summary of this work is presented.


2015 ◽  
Vol 764-765 ◽  
pp. 757-761 ◽  
Author(s):  
Yunn Lin Hwang ◽  
Jung Kuang Cheng ◽  
Van Thuan Truong

This paper presents simulation of multibody manufacturing systems with the support of numerical tools. The dynamic and cybernetic characteristics of driving system are discussed. Simple prototype models of robot arm and machine tool’s driving system are quickly established in Computer Aided Design (CAD) software inwhich the whole specification of material, inertia and so on are involved. The prototypes therefore are simulated in RecurDyn- a Computer Aided Engineering (CAE) software. The models are driven by controllers built in Matlab/Simulink via co-simulation. The results are suitable with theory and able to exploied for expansion of complexly effective factors. The research indicates that dynamic analysis and control could be done via numerical method instead of directly dynamic equation creation for multibody manufacturing systems.


Sign in / Sign up

Export Citation Format

Share Document