Numerical Modelling of a Heaving Point Absorber in Front of a Vertical Wall

Author(s):  
Julius Schay ◽  
Joydip Bhattacharjee ◽  
C. Guedes Soares

The hydrodynamic performance of a heaving point absorber as a wave energy converter near a large body is studied through numerical modeling. First the study is performed for an individual point absorber in the absence of large structure and the results are compared with the results available in the literature. Next, the performance of a point absorber floating in the vicinity of a large body, which is considered as a fixed vertical wall, is investigated. The efficiency of the power absorption in regular and irregular seas is examined based on different floater sizes, floater shapes, drafts, wave heading angle and positioning of the floater. Numerical simulations are based on hydrodynamic forces and coefficients, obtained with the commercial software WAMIT.

2014 ◽  
Vol 78 ◽  
pp. 11-21 ◽  
Author(s):  
A.S. Zurkinden ◽  
F. Ferri ◽  
S. Beatty ◽  
J.P. Kofoed ◽  
M.M. Kramer

2013 ◽  
Vol 27 (1) ◽  
pp. 73-86 ◽  
Author(s):  
Hai-tao Zhao ◽  
Zhi-lin Sun ◽  
Chun-ling Hao ◽  
Jia-fa Shen

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1731
Author(s):  
Dan Montoya ◽  
Elisabetta Tedeschi ◽  
Luca Castellini ◽  
Tiago Martins

Wave energy is nowadays one of the most promising renewable energy sources; however, wave energy technology has not reached the fully-commercial stage, yet. One key aspect to achieve this goal is to identify an effective control strategy for each selected Wave Energy Converter (WEC), in order to extract the maximum energy from the waves, while respecting the physical constraints of the device. Model Predictive Control (MPC) can inherently satisfy these requirements. Generally, MPC is formulated as a quadratic programming problem with linear constraints (e.g., on position, speed and Power Take-Off (PTO) force). Since, in the most general case, this control technique requires bidirectional power flow between the PTO system and the grid, it has similar characteristics as reactive control. This means that, under some operating conditions, the energy losses may be equivalent, or even larger, than the energy yielded. As many WECs are designed to only allow unidirectional power flow, it is necessary to set nonlinear constraints. This makes the optimization problem significantly more expensive in terms of computational time. This work proposes two MPC control strategies applied to a two-body point absorber that address this issue from two different perspectives: (a) adapting the MPC formulation to passive loading strategy; and (b) adapting linear constraints in the MPC in order to only allow an unidirectional power flow. The results show that the two alternative proposals have similar performance in terms of computational time compared to the regular MPC and obtain considerably more power than the linear passive control, thus proving to be a good option for unidirectional PTO systems.


2017 ◽  
Vol 31 (3) ◽  
pp. 370-377 ◽  
Author(s):  
Xiong-bo Zheng ◽  
Yong Ma ◽  
Liang Zhang ◽  
Jin Jiang ◽  
Heng-xu Liu

2021 ◽  
pp. 108767
Author(s):  
Ru Xi ◽  
Haicheng Zhang ◽  
DaolinXu ◽  
Huai Zhao ◽  
Ramnarayan Mondal

2020 ◽  
Vol 197 ◽  
pp. 106828 ◽  
Author(s):  
Benjamin W. Schubert ◽  
William S.P. Robertson ◽  
Benjamin S. Cazzolato ◽  
Mergen H. Ghayesh

Author(s):  
Eirini Katsidoniotaki ◽  
Edward Ransley ◽  
Scott Brown ◽  
Johannes Palm ◽  
Jens Engström ◽  
...  

Abstract Accurate modeling and prediction of extreme loads for survivability is of crucial importance if wave energy is to become commercially viable. The fundamental differences in scale and dynamics from traditional offshore structures, as well as the fact that wave energy has not converged around one or a few technologies, implies that it is still an open question how the extreme loads should be modeled. In recent years, several methods to model wave energy converters in extreme waves have been developed, but it is not yet clear how the different methods compare. The purpose of this work is the comparison of two widely used approaches when studying the response of a point-absorber wave energy converter in extreme waves, using the open-source CFD software OpenFOAM. The equivalent design-waves are generated both as equivalent regular waves and as focused waves defined using NewWave theory. Our results show that the different extreme wave modeling methods produce different dynamics and extreme forces acting on the system. It is concluded that for the investigation of point-absorber response in extreme wave conditions, the wave train dynamics and the motion history of the buoy are of high importance for the resulting buoy response and mooring forces.


Sign in / Sign up

Export Citation Format

Share Document