Energy Harvesting Using Flapping Dynamics of Piezoelectric Inverted Flexible Foil

Author(s):  
Pardha S. Gurugubelli ◽  
Rajeev K. Jaiman

This paper presents a numerical study on the self-induced flapping dynamics of an inverted flexible foil in the context of energy harvesting using piezoelectric elements. The inverted foil considered in this study is clamped at the trailing edge and the leading edge is free to oscillate. To simulate the nonlinear flapping dynamics of an inverted flexible foil, a high-order coupled fluid-structure solver based on the combined field with explicit interface (CFEI) has been developed. Additionally, a simplified piezoelectric model has been presented to determine the electric energy that can be harvested through flapping. The coupled solver is validated over a flexible foil fixed at the leading edge and trailing edge free to oscillate. A systematic study on the flapping response of an inverted flexible foil has been performed for a wide range of non-dimensional bending rigidity for a fixed Reynolds number of 1000 and mass ratio of 0.1. As a function of decreasing bending rigidity, four flapping regimes have been observed: (i) fixed-point stable, (ii) inverted limit-cycle oscillations, (iii) deformed flapping and (iv) flipped flapping. The inverted limit-cycle oscillations are characterized by low-frequency large amplitude oscillations which generate O(103) times greater strain energy than a flexible foil fixed at the leading edge, which has a profound impact on the development of ocean current based energy harvesting devices.

2020 ◽  
Vol 9 (1) ◽  
pp. 23
Author(s):  
David Balam-Tamayo ◽  
Carlos Málaga ◽  
Bernardo Figueroa-Espinoza

The performance and flow around an oscillating foil device for current energy extraction (a wingmill) was studied through numerical simulations. OpenFOAM was used in order to study the two-dimensional (2D) flow around a wingmill. A closed loop control law was coded in order to follow a reference angle of attack. The objective of this control law is to modify the angle of attack in order to enhance the lift force (and increase power extraction). Dimensional analysis suggests a compromise between the generator (or damper) stiffness and actuator/control gains, so a parametric study was carried out while using a new dimensionless number, called B, which represents this compromise. It was found that there is a maximum on the efficiency curve in terms of the aforementioned dimensionless parameter. The lessons that are learned from this fluid-structure and feedback coupling are discussed; this interaction, combined with the feedback dynamics, may trigger dynamic stall, thus decreasing the performance. Moreover, if the control strategy is not carefully selected, then the energy spent on the actuator may affect efficiency considerably. This type of simulation could allow for the system identification, control synthesis, and optimization of energy harvesting devices in future studies.


2019 ◽  
Vol 11 (5) ◽  
pp. 1423 ◽  
Author(s):  
Md Rakibuzzaman ◽  
Hyoung-Ho Kim ◽  
Kyungwuk Kim ◽  
Sang-Ho Suh ◽  
Kyung Kim

Effective hydraulic turbine design prevents sediment and cavitation erosion from impacting the performance and reliability of the machine. Using computational fluid dynamics (CFD) techniques, this study investigated the performance characteristics of sediment and cavitation erosion on a hydraulic Francis turbine by ANSYS-CFX software. For the erosion rate calculation, the particle trajectory Tabakoff–Grant erosion model was used. To predict the cavitation characteristics, the study’s source term for interphase mass transfer was the Rayleigh–Plesset cavitation model. The experimental data acquired by this study were used to validate the existing evaluations of the Francis turbine. Hydraulic results revealed that the maximum difference was only 0.958% compared with the CFD data, and 0.547% compared with the experiment (Korea Institute of Machinery and Materials (KIMM)). The turbine blade region was affected by the erosion rate at the trailing edge because of their high velocity. Furthermore, in the cavitation–erosion simulation, it was observed that abrasion propagation began from the pressure side of the leading edge and continued along to the trailing edge of the runner. Additionally, as sediment flow rates grew within the area of the attached cavitation, they increased from the trailing edge at the suction side, and efficiency was reduced. Cavitation–sand erosion results then revealed a higher erosion rate than of those of the sand erosion condition.


Author(s):  
Alexander Ladino

Kinetic energy in the oceans offers an important and promising source of renewable energy which can be exploited by marine current turbines (MCT). One of the key issues related with design of MCT’s is the cavitation inception along turbine blades. Cavitation occurrence in MCT’s blades generates erosion and poor power performance with similar effect in the hydraulic turbine case. In this work, a numerical investigation using the vorticity–stream function code XFOIL in order to study cavitation characteristics in NACA 4 series profiles was performed. The study was developed systematically starting from NACA 4415 profiles and varying independently camber percentage, camber position and thickness. Other study carried out was the effect of trailing edge deflection in the cavitation bucket. Results show a symmetrical increment in cavitation free zone for profiles with increasing thickness. Also for camber increment, the cavitation free zone is incremented, especially at high angles of attack. For variation of camber percentage, increasing camber produces the cavitation bucket moves to high lift zone which suggest that the profile could cavitate at low and negative Cl in wide range of cavitation numbers. Finally the effect of trailing edge deflection produces a slight increment in cavitation free zone which is similar to the effect of camber increment. Also, the trailing edge deflection shows that a same Cl can be achieved with lower angle of attack and lower pressure coefficient compared with the standard profile, constituting a desired behavior from the cavitation point of view. Finally, local dimensionless correlations were developed which can be used for parametric studies of cavitation performance of MCT’s in the design stage.


2011 ◽  
Vol 68 (4) ◽  
pp. 878-903 ◽  
Author(s):  
Masayuki Kawashima

Abstract The effects of variations in low-level ambient vertical shear and horizontal shear on the alongfront variability of narrow cold frontal rainbands (NCFRs) that propagate into neutral and slightly unstable environments are investigated through a series of idealized cloud-resolving simulations. In cases initialized with slightly unstable sounding and weak ambient cross-frontal vertical shears, core-gap structures of precipitation along NCFRs occur that are associated with wavelike disturbances that derive their kinetic energy mainly from the mean local vertical shear and buoyancy. However, over a wide range of environmental conditions, core-gap structures of precipitation occur because of the development of a horizontal shear instability (HSI) wave along the NCFRs. The growth rate and amplitude of the HSI wave decrease significantly as the vertical shear of the ambient cross-front wind is reduced. These decreases are a consequence of the enhancement of the low-level local vertical shear immediately behind the leading edge. The strong local vertical shear acts to damp the vorticity edge wave on the cold air side of the shear zone, thereby suppressing the growth of the HSI wave through the interaction of the two vorticity edge waves. It is also noted that the initial wavelength of the HSI wave increases markedly with increasing horizontal shear. The local vertical shear around the leading edge is shown to damp long HSI waves more strongly than short waves, and the horizontal shear dependency of the wavelength is explained by the decrease in the magnitude of the vertical shear relative to that of the horizontal shear.


Author(s):  
Donghui Zhang ◽  
Jean-Luc Di Liberti ◽  
Michael Cave

A numerical study of the effect of the blade thickness on centrifugal impeller slip factor is presented in this paper. The CFD results show that generally the slip factor decreases as the blade thickness increases. Changing the thickness at different locations has different effects on the slip factor. The shroud side blade thickness has more effect on the impeller slip factor than the hub side blade thickness. In the flow direction, the blade thickness at 50% meridional distance is the major factor affecting the slip factor. The leading edge thickness has little effect on slip factor. There is an optimum thickness at the trailing edge for the maximum slip factor. For this impeller, the hub side thickness ratio of 0.5 between the trailing edge and the middle of the impeller gives the highest value of the slip factor, while the ratio of 0.25 at shroud side gives the highest value of the slip factor. A blockage factor is added into the slip factor model to include the aerodynamic blockage effect on the slip factor. The model explains the phenomena observed in the CFD results and the test data very well.


Author(s):  
Adel Ghenaiet

This paper presents a numerical study of particle laden gas flow through a two-stage hp axial turbine, by means of an in-house code based on the Lagrangian tracking model and the finite element method. As fly-ash solid particles trajectories and locations of impacts are predicted, the local erosion rates and the deteriorations of blades are assessed. The computed trajectories provide a detailed description of particles behaviors and reveal that particle impacts on the aft of vane pressure side usually lead to significant variations in the directions of particles to the next rotor blade, and subsequently particles impact the suction side. The plots of equivalent erosion rates indicate the vanes and blades locations which suffer more erosion. The first vane pressure surface is impacted more than any other component, but higher rates are seen at the top corner from trailing edge. The critical regions of erosion wear in the first rotor are observed over the top of blade leading edge extending along the tip as well as a rounding of the top corner from trailing edge. In the second vane, the regions of higher erosion are revealed over the last third of leading edge and the top corner extending along tip. The erosion in the second rotor is over a large area of suction side till the tip corner. The predicted areas of extreme erosion, also shown by the deteriorated profiles, are indicators for anticipated vanes and blades failures.


2016 ◽  
Vol 28 (2) ◽  
pp. 163-177 ◽  
Author(s):  
Lars O Bernhammer ◽  
Roeland De Breuker ◽  
Moti Karpel

A novel configuration of an energy harvester for local actuation and sensing devices using limit cycle oscillations has been modeled, designed and tested. A wing section has been designed with two trailing-edge free-floating flaps. A free-floating flap is a flap that can freely rotate around a hinge axis and is driven by trailing edge tabs. In the rotational axis of each flap a generator is mounted that converts the vibrational energy into electricity. It has been demonstrated numerically how a simple electronic system can be used to keep such a system at stable limit cycle oscillations by varying the resistance in the electric circuit. Additionally, it was shown that the stability of the system is coupled to the charge level of the battery, with increasing charge level leading to a less stable system. The system has been manufactured and tested in the Open Jet Wind Tunnel Facility of the Technical University Delft. The numerical results could be validated successfully and voltage generation could be demonstrated at cost of a decrease in lift of 2%.


Sign in / Sign up

Export Citation Format

Share Document