blockage factor
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 3)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
V. R. Sanal Kumar ◽  
Vigneshwaran Sankar ◽  
Nichith Chandrasekaran ◽  
Sulthan Ariff Rahman Mohamed Rafic ◽  
Ajith Sukumaran ◽  
...  

AbstractEvidences are escalating on the diverse neurological-disorders and asymptomatic cardiovascular-diseases associated with COVID-19 pandemic due to the Sanal-flow-choking. Herein, we established the proof of the concept of nanoscale Sanal-flow-choking in real-world fluid-flow systems using a closed-form-analytical-model. This mathematical-model is capable of predicting exactly the 3D-boundary-layer-blockage factor of nanoscale diabatic-fluid-flow systems (flow involves the transfer of heat) at the Sanal-flow-choking condition. As the pressure of the diabatic nanofluid and/or non-continuum-flows rises, average-mean-free-path diminishes and thus, the Knudsen-number lowers heading to a zero-slip wall-boundary condition with the compressible-viscous-flow regime in the nanoscale-tubes leading to Sanal-flow-choking due to the sonic-fluid-throat effect. At the Sanal-flow-choking condition the total-to-static pressure ratio (ie., systolic-to-diastolic pressure ratio) is a unique function of the heat-capacity-ratio of the real-world flows. The innovation of the nanoscale Sanal-flow-choking model is established herein through the entropy relation, as it satisfies all the conservation-laws of nature. The physical insight of the boundary-layer-blockage persuaded nanoscale Sanal-flow-choking in diabatic flows presented in this article sheds light on finding solutions to numerous unresolved scientific problems in physical, chemical and biological sciences carried forward over the centuries because the mathematical-model describing the phenomenon of Sanal-flow-choking is a unique scientific-language of the real-world-fluid flows. The 3D-boundary-layer-blockage factors presented herein for various gases are universal-benchmark-data for performing high-fidelity in silico, in vitro and in vivo experiments in nanotubes.



2021 ◽  
Author(s):  
Deviparameswari K ◽  
Meenakshi S ◽  
Akshay Kumar N ◽  
Vigneshwaran R ◽  
Rohini Janaki B ◽  
...  


Author(s):  
Yingying Zhang ◽  
Shijie Zhang

This study proposes a 1D meanline program for the modeling of modern transonic axial multistage compressors. In this method, an improved blockage factor model is proposed. Work-done factor that varies with the compressor performance conditions is added in this program, and at the same time a notional blockage factor is kept. The coefficient of deviation angle model is tuned according to experimental data. In addition, two surge methods that originated from different sources are chosen to add in and compare with the new method called mass flow separation method. The salient issues presented here deal first with the construction of the compressor program. Three well-documented National Aerodynamics and Space Administration (NASA) axial transonic compressors are calculated, and the speedlines and aerodynamic parameters are compared with the experimental data to verify the reliability and robustness of the proposed method. Results show that consistent agreement can be obtained with such a performance prediction program. It was also apparent that the two common methods of surge prediction, which rely upon either stage or overall characteristic gradients, gave less agreement than the method called mass flow separation method.



Author(s):  
Deqiang Li ◽  
Zhicheng Liu ◽  
Qinghe Liu ◽  
Zefei Gao ◽  
Junkai Zhu ◽  
...  

AbstractBackgroundSince the 2019-nCoV (COVID-19) outbreaks in Wuhan, China, the cumulative number of confirmed cases is increasing every day, and a large number of populations all over the world are at risk. The quarantine and traffic blockage can alleviate the risk of the epidemic and the infections, henceforth evaluating the efficacy of such actions is essential to inform policy makers and raise the public awareness of the importance of self-isolation and quarantine.MethodWe collected confirmed case data and the migration data, and introduced the quarantine factor and traffic blockage factor to the Flow-SEIR model. By varying the quarantine factor and traffic blockage factor, we simulated the change of the peak number and arrival time of infections, then the efficacy of these two intervation measures can be analyzed in our simulation. In our study, the self-protection at home is also included in quarantine.ResultsIn the simulated results, the quarantine and traffic blockage are effective for epidemic control. For Hubei province, the current quarantine factor is estimaed to be 0.405, which means around 40.5% of suceptibles who are close contacting with are in quarantine, and the current traffic blockage factor is estimaed to be 0.66, which indicates around 34% of suceptibles who had flowed out from Hubei. For the other provinces outside Hubei, the current quarantine factor is estimated to be 0.285, and the current traffic blockage factor is estimated to be 0.26. With the quarantine and traffic blockage factor increasing, the number of infections decrease dramatically. We also simulated the start dates of quarantine and traffic blockage at four time points, the simulated results show that the early of warning is also effective for epidemic containing. However, provincial level traffic blockage can only alleviate 21.06% - 22.38% of the peak number of infections. In general, the quarantine is much more effective than the traffic blockage control.ConclusionBoth of quarantine and traffic blockage are effective ways to control the spread of COVID-19. However, the eff icacy of quarantine is found to be much stronger than that of traffic blockage. Considering traffic blockage may also cause huge losses of economy, we propose to gradually deregulate the traffic blockage, and improve quarantine instead. Also, there might be a large number of asymptomatic carriers of COVID-19, the quarantine should be continued for a long time until the epidemic is totally under control.



Author(s):  
Anand Mammen Thomas ◽  
Jensen Samuel ◽  
A. Ramesh

Mean-line modelling approach which has generally been applied to fixed geometry turbocharger turbines has been extended to predict the performance of the variable geometry turbine for different inlet blade angles. The model uses an initial assumption of turbine inlet pressure which was iteratively corrected based on outlet pressure boundary condition. The model was implemented in MATLAB and stable and convergent solutions were obtained using relaxation techniques for different operating conditions. Experiments were done on a state of the art transient diesel engine test bed using the same VGT turbine in the turbocharger at different engine torques and speeds. Using experimental data the model was calibrated for the aerodynamic blockage in the fixed nozzle and rotor blade passages. Results revealed that turbine overall pressure ratio can be predicted accurately if a blockage factor varying with nozzle blade orientation is used in the model.



Author(s):  
Donghui Zhang ◽  
Jean-Luc Di Liberti ◽  
Michael Cave

A numerical study of the effect of the blade thickness on centrifugal impeller slip factor is presented in this paper. The CFD results show that generally the slip factor decreases as the blade thickness increases. Changing the thickness at different locations has different effects on the slip factor. The shroud side blade thickness has more effect on the impeller slip factor than the hub side blade thickness. In the flow direction, the blade thickness at 50% meridional distance is the major factor affecting the slip factor. The leading edge thickness has little effect on slip factor. There is an optimum thickness at the trailing edge for the maximum slip factor. For this impeller, the hub side thickness ratio of 0.5 between the trailing edge and the middle of the impeller gives the highest value of the slip factor, while the ratio of 0.25 at shroud side gives the highest value of the slip factor. A blockage factor is added into the slip factor model to include the aerodynamic blockage effect on the slip factor. The model explains the phenomena observed in the CFD results and the test data very well.



2008 ◽  
Vol 130 (11) ◽  
Author(s):  
Shuichi Torii ◽  
Wen-Jei Yang

A numerical study is performed to investigate unsteady, two-dimensional, incompressible laminar flow over both sides of a slot-perforated flat surface in a pulsating channel flow. Consideration is given to the effects of the pulsating Strouhal number fSr, the Reynolds number Re, and the blockage factor, i.e., the ratio of plate thickness, δ, to channel width, W, on the heat-transfer performance and the velocity and thermal fields. It is found from the study that (i) time-averaged Nusselt number at the rear plate is amplified with Re, (ii) in contrast, the corresponding performance is attenuated with an increase in the blockage factor, whose effect becomes larger in the lower region of the Reynolds number, i.e., Re=100, and (iii) enhancement of the Nusselt number causes an increase in fSr, whose effect becomes minor near in the region of Re=100.



Author(s):  
Shuichi Torii ◽  
Wen Jei Yang

A numerical study is performed to investigate unsteady, two-dimensional, incompressible laminar flow over both sides of a slot-perforated flat surface in a pulsating channel flow. Enhances is placed on the effects of the pulsating Strouhal number, the Reynolds number Re, the blockage factor, i.e., the ratio of plate thickness, d, to channel width, W, on the heat transfer performance and the velocity and thermal fields. It is found from the study that: (i) when the fluid stream is pulsated, the alternating change in the fluid flow disturbs the thermal boundary layer formed along the plate and induces mixing of the upper and lower streams of the plate downstream from the slot, resulting in an amplification of heat-transfer performance; (ii) heat transfer performance at the rear plate is induced with Re; (iii) by contrast, heat transfer performance is attenuated with an increase in the blockage factor, whose effect becomes larger in the lower region of the Reynolds number; and (iv) heat transfer performance is intensified with an increase in fSr, whose effect becomes minor in the lower region of the Reynolds number.



Sign in / Sign up

Export Citation Format

Share Document