The Increasing Prevalence of High Frequency Internal Waves in an Arctic Ocean With Declining Sea Ice Cover

Author(s):  
Tom Rippeth ◽  
Vasyl Vlasenko ◽  
Nataliya Stashchuk ◽  
Igor E. Kozlov ◽  
Brian Scannell ◽  
...  

Abstract Receding seasonal sea ice extent over the Arctic Ocean is increasing access to what was a largely inaccessible region. At lower latitudes the complex vertical current structure associated with large amplitude, high frequency non-linear internal waves, sometimes referred to as solitons, present a significant challenge to the safe engineering design and operation of offshore infrastructure. In this paper we examine the prevalence this type of internal wave in the Arctic Ocean. To do so we will draw on both in situ and remotely sensed oceanographic data. This will be combined with state-of-the-art numerical modelling to demonstrate a link between the geographical occurrence of these waves and the tide. Whilst the link implies that these features are geographically limited, it is also likely that the geographical limits will change with declining sea ice cover. These results will then be used to provide a road map towards a methodology for forecasting the prevalence of these phenomena in a future Arctic Ocean.

2018 ◽  
Vol 12 (2) ◽  
pp. 433-452 ◽  
Author(s):  
Alek A. Petty ◽  
Julienne C. Stroeve ◽  
Paul R. Holland ◽  
Linette N. Boisvert ◽  
Angela C. Bliss ◽  
...  

Abstract. The Arctic sea ice cover of 2016 was highly noteworthy, as it featured record low monthly sea ice extents at the start of the year but a summer (September) extent that was higher than expected by most seasonal forecasts. Here we explore the 2016 Arctic sea ice state in terms of its monthly sea ice cover, placing this in the context of the sea ice conditions observed since 2000. We demonstrate the sensitivity of monthly Arctic sea ice extent and area estimates, in terms of their magnitude and annual rankings, to the ice concentration input data (using two widely used datasets) and to the averaging methodology used to convert concentration to extent (daily or monthly extent calculations). We use estimates of sea ice area over sea ice extent to analyse the relative “compactness” of the Arctic sea ice cover, highlighting anomalously low compactness in the summer of 2016 which contributed to the higher-than-expected September ice extent. Two cyclones that entered the Arctic Ocean during August appear to have driven this low-concentration/compactness ice cover but were not sufficient to cause more widespread melt-out and a new record-low September ice extent. We use concentration budgets to explore the regions and processes (thermodynamics/dynamics) contributing to the monthly 2016 extent/area estimates highlighting, amongst other things, rapid ice intensification across the central eastern Arctic through September. Two different products show significant early melt onset across the Arctic Ocean in 2016, including record-early melt onset in the North Atlantic sector of the Arctic. Our results also show record-late 2016 freeze-up in the central Arctic, North Atlantic and the Alaskan Arctic sector in particular, associated with strong sea surface temperature anomalies that appeared shortly after the 2016 minimum (October onwards). We explore the implications of this low summer ice compactness for seasonal forecasting, suggesting that sea ice area could be a more reliable metric to forecast in this more seasonal, “New Arctic”, sea ice regime.


2017 ◽  
Author(s):  
Alek A. Petty ◽  
Julienne C. Stroeve ◽  
Paul R. Holland ◽  
Linette N. Boisvert ◽  
Angela C. Bliss ◽  
...  

Abstract. 2016 was an interesting year in the Arctic, with record low sea ice at the start of the year, but a summer (September) Arctic sea ice extent that was higher than expected by most seasonal forecasts. Here we explore the 2016 Arctic sea ice state in terms of its monthly sea ice cover, placing this in context of the sea ice conditions observed since 2000. We demonstrate the sensitivity of monthly Arctic sea ice extent and area estimates, in terms of their magnitude and annual rankings, to the ice concentration input data (using two widely used datasets) and to the methodology used to convert concentration to extent (daily or monthly extent calculations). We use estimates of sea ice area to analyse the relative 'compactness' of the Arctic sea ice cover, highlighting anomalously low compactness in the summer of 2016 which contributed to the higher than expected September ice extent. Two cyclones that entered the Arctic Ocean during August appear to have driven this low concentration/compactness ice cover, but were not sufficient to cause more widespread melt out and a new record low September ice extent. We use concentration budgets to explore the regions and processes (thermodynamics/dynamics) contributing to the monthly 2016 extent/area estimates highlighting, amongst other things, rapid ice intensification across the central eastern Arctic through September. Two different products show significant early melt onset across the Arctic Ocean in 2016, including record early melt onset in the North Atlantic sector of the Arctic. Our results also show record late 2016 freeze up in the Central Arctic, North Atlantic. and the Alaskan Arctic sector in particular, associated with strong sea surface temperature anomalies that appeared shortly after the 2016 minimum (October onwards). We explore the implications of this low summer ice compactness for seasonal forecasting, suggesting that sea ice area could be a more reliable metric to forecast in this more seasonal, 'New Arctic', sea ice regime.


2009 ◽  
Vol 22 (1) ◽  
pp. 165-176 ◽  
Author(s):  
R. W. Lindsay ◽  
J. Zhang ◽  
A. Schweiger ◽  
M. Steele ◽  
H. Stern

Abstract The minimum of Arctic sea ice extent in the summer of 2007 was unprecedented in the historical record. A coupled ice–ocean model is used to determine the state of the ice and ocean over the past 29 yr to investigate the causes of this ice extent minimum within a historical perspective. It is found that even though the 2007 ice extent was strongly anomalous, the loss in total ice mass was not. Rather, the 2007 ice mass loss is largely consistent with a steady decrease in ice thickness that began in 1987. Since then, the simulated mean September ice thickness within the Arctic Ocean has declined from 3.7 to 2.6 m at a rate of −0.57 m decade−1. Both the area coverage of thin ice at the beginning of the melt season and the total volume of ice lost in the summer have been steadily increasing. The combined impact of these two trends caused a large reduction in the September mean ice concentration in the Arctic Ocean. This created conditions during the summer of 2007 that allowed persistent winds to push the remaining ice from the Pacific side to the Atlantic side of the basin and more than usual into the Greenland Sea. This exposed large areas of open water, resulting in the record ice extent anomaly.


2021 ◽  
Author(s):  
David Gareth Babb ◽  
Ryan J. Galley ◽  
Stephen E. L. Howell ◽  
Jack Christopher Landy ◽  
Julienne Christine Stroeve ◽  
...  

2018 ◽  
Vol 44 (2) ◽  
pp. 659 ◽  
Author(s):  
M. Vázquez ◽  
R. Nieto ◽  
A. Drumond ◽  
L. Gimeno

The Arctic Ocean has suffered extreme reductions in sea ice in recent decades, and these observed changes suggest implications in terms of moisture transport. The Arctic region is a net sink of moisture in terms of the total hydrological cycle, however, its role as a moisture source for specific regions has not been extensively studied. Our results show that 80% of the moisture supply from the Arctic contributes to precipitation over itself, representing about 8% of the global moisture supply to the Arctic, the remaining 20% is distributed in the surrounding. A reduction in the sea ice extent could make the Arctic Ocean a slightly higher source of moisture to itself or to the surrounding areas. The analysis of the areas affected by Arctic moisture transport is important for establishing those areas vulnerable to change in a framework of a growing sea ice decline. To this end, the Lagrangian model FLEXPART was used in this work to establish the main sinks for the Arctic Ocean, focusing on the moisture transport from this region. The results suggest that most of the moisture loss occurs locally over the Arctic Ocean itself, especially in summer. Some moisture contribution from the Arctic Ocean to continental areas in North America and Eurasia is also noted in autumn and winter especially from Central Arctic, the East Siberian Sea, the Laptev, Kara, Barents, East Greenland and Bering Seas, and the Sea of Okhotsk.


2014 ◽  
Vol 44 (5) ◽  
pp. 1329-1353 ◽  
Author(s):  
Michel Tsamados ◽  
Daniel L. Feltham ◽  
David Schroeder ◽  
Daniela Flocco ◽  
Sinead L. Farrell ◽  
...  

Abstract Over Arctic sea ice, pressure ridges and floe and melt pond edges all introduce discrete obstructions to the flow of air or water past the ice and are a source of form drag. In current climate models form drag is only accounted for by tuning the air–ice and ice–ocean drag coefficients, that is, by effectively altering the roughness length in a surface drag parameterization. The existing approach of the skin drag parameter tuning is poorly constrained by observations and fails to describe correctly the physics associated with the air–ice and ocean–ice drag. Here, the authors combine recent theoretical developments to deduce the total neutral form drag coefficients from properties of the ice cover such as ice concentration, vertical extent and area of the ridges, freeboard and floe draft, and the size of floes and melt ponds. The drag coefficients are incorporated into the Los Alamos Sea Ice Model (CICE) and show the influence of the new drag parameterization on the motion and state of the ice cover, with the most noticeable being a depletion of sea ice over the west boundary of the Arctic Ocean and over the Beaufort Sea. The new parameterization allows the drag coefficients to be coupled to the sea ice state and therefore to evolve spatially and temporally. It is found that the range of values predicted for the drag coefficients agree with the range of values measured in several regions of the Arctic. Finally, the implications of the new form drag formulation for the spinup or spindown of the Arctic Ocean are discussed.


2017 ◽  
Author(s):  
Jun Ono ◽  
Hiroaki Tatebe ◽  
Yoshiki Komuro ◽  
Masato I. Nodzu ◽  
Masayoshi Ishii

Abstract. To assess the skill of predictions of the seasonal-to-interannual detrended sea ice extent in the Arctic Ocean (SIEAO) and to clarify the underlying physical processes, we conducted ensemble hindcasts, started on January 1st, April 1st, July 1st, and October 1st for each year from 1980 to 2011, for lead times of up three years, using the Model for Interdisciplinary Research on Climate (MIROC) version 5 initialized with the observed atmosphere and ocean anomalies and sea ice concentration. Significant skill is found for the winter months: the December SIEAO can be predicted up to 1 year ahead. This skill is attributed to the subsurface ocean heat content originating in the North Atlantic. The subsurface water flows into the Barents Sea from spring to fall and emerges at the surface in winter by vertical mixing, and eventually affects the sea ice variability there. Meanwhile, the September SIEAO predictions are skillful for lead times of up to 3 months, due to the persistence of sea ice in the Beaufort, Chukchi, and East Siberian Seas initialized in July, as suggested by previous studies.


2021 ◽  
Author(s):  
Magda Carr ◽  
Peter Sutherland ◽  
Andrea Haase ◽  
Karl-Ulrich Evers ◽  
Ilker Fer ◽  
...  

<p>Oceanic internal waves (IWs) propagate along density interfaces and are ubiquitous in stratified water. Their properties are influenced strongly by the nature and form of the upper and lower bounding surfaces of the containing basin(s) in which they propagate.<span>  </span>As the Arctic Ocean evolves to a seasonally more ice-free state, the IW field will be affected by the change. The relationship between IW dynamics and ice is important in understanding (i) the general circulation and thermodynamics in the Arctic Ocean and (ii) local mixing processes that supply heat and nutrients from depth into upper layers, especially the photic zone. This, in turn, has important ramifications for sea ice formation processes and the state of local and regional ecosystems.<span>  </span>Despite this, the effect of diminishing sea ice cover on the IW field (and vice versa) is not well established. A better understanding of IW dynamics in the Arctic Ocean and, in particular, how the IW field is affected by changes in both ice cover and stratification, is central in understanding how the rapidly changing Arctic will adapt to climate change.</p><p> </p><p>An experimental study of internal solitary waves (ISWs) propagating in a stably stratified two-layer fluid in which the upper boundary condition changes from open water to ice are studied for grease, level, and nilas ice. The experiments show that the internal wave-induced flow at the surface is capable of transporting sea-ice in the horizontal direction. In the level ice case, the transport speed of, relatively long ice floes, nondimensionalized by the wave speed is linearly dependent on the length of the ice floe nondimensionalized by the wave length. It will also be shown that bottom roughness associated with different ice types can cause varying degrees of vorticity and small-scale turbulence in the wave-induced boundary layer beneath the ice. Measures of turbulent kinetic energy dissipation under the ice are shown to be comparable to those at the wave density interface. Moreover, in cases where the ice floe protrudes into the pycnocline, interaction with the ice edge can cause the ISW to break or even be destroyed by the process. The results suggest that interaction between ISWs and sea ice may be an important mechanism for dissipation of ISW energy in the Arctic Ocean.</p><p> </p><p><strong>Acknowledgements</strong></p><p>This work was funded through the EU Horizon 2020 Research and Innovation Programme Hydralab+.</p>


Author(s):  
Klaus Dodds ◽  
Mark Nuttall

Every week, stories about the Arctic, usually addressing the state of sea ice extent and thickness, diminishing glaciers, rapidly thawing permafrost, acidification of the Arctic Ocean, the resource potential of the region, the opening of new shipping routes, and possible geopolitical tensions, appear in the...


2021 ◽  
Author(s):  
Agata Grynczel ◽  
Agnieszka Beszczynska-Moeller ◽  
Waldemar Walczowski

<p>The Arctic Ocean is undergoing rapid change. Satellite observations indicate significant negative Arctic sea ice extent trends in all months and substantial reduction of winter sea ice in the Atlantic sector. One of the possible reasons can be sought in the observed warming of Atlantic water, carried through Fram Strait into the Arctic Ocean. Fram Strait, as well as the region north of Svalbard, play a key role in controlling the amount of oceanic heat supplied to the Arctic Ocean and are the place of dynamic interaction between the ocean and sea ice. Shrinking sea ice cover in the southern part of Nansen Basin (north of Svalbard) and shifting the ice edge in Fram Strait are driven by the interplay between increased advection of oceanic heat in the Atlantic origin water and changes in the local atmospheric conditions.</p><p>Processes related to the loss of sea ice and the upward transport of heat from the layers of the Arctic Ocean occupied by the Atlantic water are still not fully explored, but higher than average temperature of Atlantic inflow in the Nordic Seas influence the upper ocean stratification and ice cover in the Arctic Ocean, in particular in the north of Svalbard area. The regional sea ice cover decline is statistically signifcant in all months, but the largest changes in the Nansen Basin are observed in winter season. The winter sea ice loss north of Svalbard is most pronounced above the core of the inflow warm Atlantic water. The basis for this hypothesis of the research is that continuously shrinking sea ice cover in the region north of Svalbard and withdrawal of the sea ice cover towards the northeast are driven by the interplay between increased oceanic heat in the Atlantic origin water and changes in the local atmospheric conditions, that can result in the increased ocean-air-sea ice exchange in winter seasons. In the current study we describe seasonal, interannual and decadal variability of concentration, drift, and thickness of sea ice in two regions, the north of Svalbard and central part of the Fram Strait, based on the satellite observations. To analyze the observed changes in the sea ice cover in relation to Atlantic water variability and atmospheric forcing we employ hydrographic data from the repeated CTD sections and new atmospheric reanalysis from ERA5. Atlantic water variability is described based on the set of summer synoptic sections across the Fram Strait branch of the Atlantic inflow that have been occupied annually since 1996 under the long-term observational program AREX of the Institute of Oceanology PAS. To elucidate driving mechanisms of the sea ice cover changes observed in different seasons in Fram Strait and north of Svalbard we analyze changes in the temperature, heat content and transport of the Atlantic water and describe their potential links to variable atmospheric forcing, including air temperature, air-ocean fluxes, and changes in wind pattern and wind stress.</p>


Sign in / Sign up

Export Citation Format

Share Document