Casing Wear Simulation by Application of Real-Time Data and Predictive Modelling

Author(s):  
Andreas Teigland ◽  
Sigbjørn Sangesland ◽  
Stein Inge Dale

Abstract Casing wear poses a significant safety hazard during drilling and production of hydrocarbons. Failure to maintain integrity due to inaccurate casing wear estimation can cause severe accidents or preclude prospective operations. Current industry practice is to estimate casing wear during the planning phase of the well and subsequently use assumed operational parameters with inherent uncertainties. This paper aims to study how to utilize real-time data to improve the industry standard methodology and evaluate the benefit of the modification. The research was conducted by applying the model on data from a well on the Norwegian continental shelf. There were two main objectives of the research. Firstly, the industry standard approach to casing wear estimation was expanded to include real-time data. Application of real-time data to the industry standard method for estimating casing wear caused a significant difference in results. The approach using real-time data resulted in an estimate of more casing wear compared to the standard approach. Secondly, an algorithm for continuous prediction of casing wear at the end of operation was developed. The predictive algorithm resulted in consistently more accurate estimates in relation to the final value throughout the operation. With variations in input parameters and consecutive casing wear of this magnitude, well integrity cannot be ensured during operation without application of real-time data. The failure to maintain well integrity demonstrates the necessity of the proposed approach.

Author(s):  
Sridharan Chandrasekaran ◽  
G. Suresh Kumar

Rate of Penetration (ROP) is one of the important factors influencing the drilling efficiency. Since cost recovery is an important bottom line in the drilling industry, optimizing ROP is essential to minimize the drilling operational cost and capital cost. Traditional the empirical models are not adaptive to new lithology changes and hence the predictive accuracy is low and subjective. With advancement in big data technologies, real- time data storage cost is lowered, and the availability of real-time data is enhanced. In this study, it is shown that optimization methods together with data models has immense potential in predicting ROP based on real time measurements on the rig. A machine learning based data model is developed by utilizing the offset vertical wells’ real time operational parameters while drilling. Data pre-processing methods and feature engineering methods modify the raw data into a processed data so that the model learns effectively from the inputs. A multi – layer back propagation neural network is developed, cross-validated and compared with field measurements and empirical models.


2010 ◽  
Author(s):  
Ashish Arvind Chitale ◽  
William R. Blosser ◽  
Brian J. Arias

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 399-P
Author(s):  
ANN MARIE HASSE ◽  
RIFKA SCHULMAN ◽  
TORI CALDER

2021 ◽  
Vol 31 (6) ◽  
pp. 7-7
Author(s):  
Valerie A. Canady
Keyword(s):  

Author(s):  
Yu-Hsiang Wu ◽  
Jingjing Xu ◽  
Elizabeth Stangl ◽  
Shareka Pentony ◽  
Dhruv Vyas ◽  
...  

Abstract Background Ecological momentary assessment (EMA) often requires respondents to complete surveys in the moment to report real-time experiences. Because EMA may seem disruptive or intrusive, respondents may not complete surveys as directed in certain circumstances. Purpose This article aims to determine the effect of environmental characteristics on the likelihood of instances where respondents do not complete EMA surveys (referred to as survey incompletion), and to estimate the impact of survey incompletion on EMA self-report data. Research Design An observational study. Study Sample Ten adults hearing aid (HA) users. Data Collection and Analysis Experienced, bilateral HA users were recruited and fit with study HAs. The study HAs were equipped with real-time data loggers, an algorithm that logged the data generated by HAs (e.g., overall sound level, environment classification, and feature status including microphone mode and amount of gain reduction). The study HAs were also connected via Bluetooth to a smartphone app, which collected the real-time data logging data as well as presented the participants with EMA surveys about their listening environments and experiences. The participants were sent out to wear the HAs and complete surveys for 1 week. Real-time data logging was triggered when participants completed surveys and when participants ignored or snoozed surveys. Data logging data were used to estimate the effect of environmental characteristics on the likelihood of survey incompletion, and to predict participants' responses to survey questions in the instances of survey incompletion. Results Across the 10 participants, 715 surveys were completed and survey incompletion occurred 228 times. Mixed effects logistic regression models indicated that survey incompletion was more likely to happen in the environments that were less quiet and contained more speech, noise, and machine sounds, and in the environments wherein directional microphones and noise reduction algorithms were enabled. The results of survey response prediction further indicated that the participants could have reported more challenging environments and more listening difficulty in the instances of survey incompletion. However, the difference in the distribution of survey responses between the observed responses and the combined observed and predicted responses was small. Conclusion The present study indicates that EMA survey incompletion occurs systematically. Although survey incompletion could bias EMA self-report data, the impact is likely to be small.


Sign in / Sign up

Export Citation Format

Share Document