A Simple and Effective Method to Predict the Generation of Black Carbon in Oilfields

Author(s):  
Guohua Dai ◽  
Yufei Wan ◽  
Chunyu Liu ◽  
Jun Sang ◽  
Wenguang Wang ◽  
...  

Abstract As an important safety discharge facility in petrochemical industry, flare is widely used in offshore and onshore oil and gas fields to relieve pressure, vent unwanted gases. This open-air combustion system oxidizes the fuel gases into carbon dioxide and water vapor and hence avoids the contamination of air with harmful gases that cause air pollution and climate change. With the increasingly strict requirements of environmental protection and the implementation of low-carbon development policy, the black carbon (soot) caused by incomplete combustion from the flare will be strictly controlled. At present, there is no simple and effective method to determine whether the flare produces visible black carbon which exacerbates the pollution. According to the investigation on site, there are different degrees of black carbon emission from the flares both in the onshore and offshore oilfield, which brings some troubles to the petroleum corporation. Based on a flare tip and the associated gas from an oilfield in Bohai Bay of China, a simulation model, which in accordance with the actual situation, was established with the Computational Fluid Dynamics software. The Non-Premixed Combustion model was used to simulate the Combustion, the P-1 model was adopted to calculate the thermal radiation and the Moss-Brookes model was selected to compute the generation of black carbon. The feasibility of the model was demonstrated by comparing the simulation results with the field test results. Then the limitation of current conventional practice to predict whether the soot is produced, was demonstrated with the model. At the same time, the production rate of black carbon under different conditions of components and fraction were calculated. After a comprehensive analysis and comparison, a simple, directly and effective method to predict the soot was proposed. When the C-to-H ratio of fuel gas is greater than 0.273, it tends to visible soot, and when the C-to-H ratio is greater than 0.285, it tends to heavy soot, which is in line with the actual in site. Therefore, the method can be applied to predict the level of the generation of black carbon in the engineering.

2011 ◽  
Vol 51 (2) ◽  
pp. 729
Author(s):  
Colin Wood ◽  
Karen Kozielski ◽  
Wendy Tian ◽  
Song Gao ◽  
Jonathan Hodgkin ◽  
...  

The development of new deepwater oil and gas fields provide an opportunity for increased use of new materials. Conventional infrastructure is constructed using significant quantities of steel and concrete, which is becoming less practical in comparison to new light weight, easy to handle composites. When infrastructure needs to be repaired, there is often a requirement for underwater welding, which carries considerable occupational health, safety and environment (OHSE) risks. For this reason, moving away from traditional metal structures or repair technologies is increasingly attractive. In recent years a number of new water activated composite wrap materials have been developed for use in underwater applications. The materials properties that are required can be difficult to achieve and maintain over an extended period of exposure to the marine environment, though, so many research groups are working on this challenge. A comprehensive literature review has been undertaken to identify present state of the art ideas for the development of improved underwater materials and this will be discussed in the context of adhesive applications. Preliminary material characterisation work will be described where new resins have been formulated to perform well in marine environments and survive prolonged exposure to seawater. Experiments were carried out in artificial seawater and samples left to cure at a range of temperatures DSC and dynamic mechanical analysis (DMTA) were used to evaluate the crosslink density of the network and the glass transition temperature respectively, while FTIR was used to determine the chemical structure in the cured systems. Preliminary mechanical test results have shown significant improvement in strength for the new formulations compared to a set of control samples of commercially available materials.


Author(s):  
Yuji Arai ◽  
Kunio Kondo ◽  
Hiroyuki Hirata ◽  
Masahiko Hamada ◽  
Nobuyuki Hisamune ◽  
...  

With the increasing development of oil and gas fields in deepwater or ultra-deepwater with deep well depth, the development of high strength seamless pipe has become necessary. This paper describes a metallurgical design of seamless pipe with high strength reaching X80–X100 grade (minimum yield strength, 552 MPa–689 MPa) manufactured by steel containing very low carbon and with a microstructure of uniform bainite. The effect of microstructure of quenched and tempered (QT) steel on strength and toughness is investigated in laboratory. Uniform bainitic structure without coarse martensite-austenite constituent (M-A) is obtained by lowering bainite transformation temperature during quenching process by controlling the alloying elements. Moreover the structure is very effective in obtaining good toughness for tempered steel even with the high strength X100 grade. Sufficiently low hardness and good toughness in heat affected zone (HAZ) are confirmed by welding tests. The trial production of developed steel is conducted by applying inline QT process in medium-size seamless mill according to an alloying design obtained in laboratory tests. The seamless pipes of the trial production achieve grades X80 to X100 by changing tempering temperature. Some data of mechanical properties of the produced pipes is introduced.


Author(s):  
Zhan Zhang ◽  
Evan David Sherwin ◽  
Adam R Brandt

Abstract Associated gas flaring during crude oil production is an important contributor to global warming. Satellite technology has made global flaring monitoring possible with high spatial resolution. In this study, we construct a granular database to geographically match global oil and gas fields with remote sensing flaring data from the Visible Infrared Imaging Radiometer Suite (VIIRS) from 2012 to 2019. The GIS database contains over 50,000 oil and gas fields and around 4,700 infrastructure sites (e.g., refineries, terminals) in 51 countries and regions, representing 96% of global oil production and 89% of natural gas production. Over 2,900 fields and 140 infrastructure sites in 47 countries contain matching flares. The annual matched flare volume covers 89~92% of the satellite-estimated flaring volume of these countries and 85~87% of total worldwide volume detected by the satellite. In 2019, a set of 263 “high-flare” fields (which flare more than 0.1 billion cubic meters per year) account for 67% of the total matched satellite-estimated volume. These fields are mainly concentrated in the Persian Gulf, West and East Siberia, Eastern Venezuela Basin, Permian and Williston Basins in the United States, the Gulf of Mexico, and West and North Africa. Accounting for asymmetric instrument uncertainty suggests that country-level flaring rates are accurate to within -8% ~ +29%, the global average within 1%.


CIM Journal ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 195-214
Author(s):  
G. J. Simandl ◽  
C. Akam ◽  
M. Yakimoski ◽  
D. Richardson ◽  
A. Teucher ◽  
...  

Author(s):  
A.V. Antonov ◽  
◽  
Yu.V. Maksimov ◽  
A.N. Korkishko ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document