Vortex-Induced Vibration of a Spherical Body With Free Surface Effects: Application to Tugboats With Low Length-to-Beam Ratio

2020 ◽  
Author(s):  
A. Chizfahm ◽  
V. Joshi ◽  
R. K. Jaiman

Abstract Flow-structure interactions of submerged or floating bodies can lead to undesired behavior in many marine and offshore engineering applications. In this paper, we consider a complex nonlinear dynamical system of unsteady wake flow interacting with a freely moving tugboat in open water. To meet the operational demands of compact, agile, and high power ship-handling, new hull forms of tugboats are designed with low length-to-beam ratios and rounded sterns. While the hydrodynamic design with low length-to-beam ratios provides improved directional controllability, it can be challenging for tractor tugboats due to the massively separated wake flow with the vortex shedding. These wake vortices can cause large fluctuating yaw moments and possibly a strong fluid-structure coupling via synchronization or lock-in. Of particular interest, the proposed study will focus on the physical mechanism and control of flow-induced oscillations with free-surface effects via our in-house fully-coupled three-dimensional fluid-structure-free-surface interaction solver. Stabilized finite element based methods will be employed to discretize the partial differential equations that arise from the mathematical modeling of the physical phenomena considered. We will begin with a fundamental understanding of coupled dynamics of a canonical geometry of a freely vibrating sphere at free-surface. The physical insight gained will then be applied to a realistic tugboat configuration. We aim to understand the fundamentals of vortex-shedding modes and the coupled dynamics pertaining to the flow-induced vibration (FIV) response of a freely vibrating sphere (a prototypical problem for a rounded tugboat) in all three spatial directions. To predict and analyze the vortex synchronization regimes and the wake patterns, the FIV response of the sphere at a low mass ratio is investigated over a broad range of reduced velocities and Reynolds numbers. We find that the sphere begins to move along a linear trajectory with hairpin vortex-shedding mode, eventually transforming into a circular trajectory with spiral mode in its stationary state for Re ∈ [2000–6000]. We systematically examine these mode transitions and the motion trajectories in the three degrees-of-freedom for higher Reynolds number up to 15,000 which has not been studied in detail in the literature. Finally, we will look into the effect of free surface on the FIV response of the sphere piercing the free surface and will link our fundamental results with a realistic configuration of tugboat undergoing vortex-induced oscillation with free surface effects.

Author(s):  
Domenica Mirauda ◽  
Antonio Volpe Plantamura ◽  
Stefano Malavasi

This work analyzes the effects of the interaction between an oscillating sphere and free surface flows through the reconstruction of the flow field around the body and the analysis of the displacements. The experiments were performed in an open water channel, where the sphere had three different boundary conditions in respect to the flow, defined as h* (the ratio between the distance of the sphere upper surface from the free surface and the sphere diameter). A quasi-symmetric condition at h* = 2, with the sphere equally distant from the free surface and the channel bottom, and two conditions of asymmetric bounded flow, one with the sphere located at a distance of 0.003m from the bottom at h* = 3.97 and the other with the sphere close to the free surface at h* = 0, were considered. The sphere was free to move in two directions, streamwise (x) and transverse to the flow (y), and was characterized by values of mass ratio, m* = 1.34 (ratio between the system mass and the displaced fluid mass), and damping ratio, ζ = 0.004. The comparison between the results of the analyzed boundary conditions has shown the strong influence of the free surface on the evolution of the vortex structures downstream the obstacle.


1983 ◽  
Vol 34 (1) ◽  
pp. 24-45 ◽  
Author(s):  
X.J. Xia ◽  
P.W. Bearman

SummaryThe effect of base slant on the base pressure distribution, drag coefficient and vortex shedding characteristics of a model consisting of an axisymmetric main body with an ellipsoidal nose have been investigated for three fineness ratios; 3, 6 and 9. A sudden change in the drag coefficient and separated flow pattern is observed at a critical slant angle (for constant incidence) or at a critical angle of incidence (for a constant base slant angle). The tests confirm that the value of the maximum drag coefficient is extremely sensitive to angle of incidence. Measurements of the frequency of vortex shedding are presented and the structure of the wake is investigated using smoke visualization and hot-wire correlation measurements. The wake is found to be far less stable than that from a two-dimensional bluff body and the vortex structures are sometimes in-phase and sometimes out of phase across the wake. The effect of free-stream turbulence on this family of body shapes is observed to be different to that on three-dimensional blunt-faced bluff bodies. Free-stream turbulence is found to have a minimal effect on base pressure for slant angles giving a recirculating type near wake flow. When longitudinal vortices are present the addition of free-stream turbulence slightly reduces the magnitude of the peak suctions recorded on the base but has little effect on base drag.


2018 ◽  
Vol 146 ◽  
pp. 135-148 ◽  
Author(s):  
Magdalena M. Miszczyk ◽  
Henryk Paul ◽  
Julian H. Driver

2015 ◽  
Vol 82 (9) ◽  
Author(s):  
X. Chen ◽  
S. A. Meguid

In this paper, we investigate the asymmetric bifurcation behavior of an initially curved nanobeam accounting for Lorentz and electrostatic forces. The beam model was developed in the framework of Euler–Bernoulli beam theory, and the surface effects at the nanoscale were taken into account in the model by including the surface elasticity and the residual surface tension. Based on the Galerkin decomposition method, the model was simplified as two degrees of freedom reduced order model, from which the symmetry breaking criterion was derived. The results of our work reveal the significant surface effects on the symmetry breaking criterion for the considered nanobeam.


Sign in / Sign up

Export Citation Format

Share Document