Development of Strong Mooring Rope With Embedded Electric Cable

Author(s):  
Ikuo Yamamoto ◽  
Toshiyuki Kosaka ◽  
Hirofumi Nakatsuka ◽  
Peter Halswell ◽  
Lars Johanning ◽  
...  

Abstract Synthetic fibre ropes are in widespread use in maritime applications ranging from lifting to temporary and permanent mooring systems for vessels, fish farm, offshore equipment and platforms. The selection of synthetic ropes over conventional steel components is motivated by several key advantages including selectable axial stiffness, energy absorption and hence load mitigation, fatigue resistance and low unit cost. The long-term use of ropes as safety critical components in potentially high dynamic loading environments necessitates that new designs are verified using stringent qualification procedures. The International Organization for Standardization (ISO) is one certification body that has produced several guidelines for the testing of synthetic ropes encompassing quasi-static and dynamic loading as well as fatigue cycling. The paper presents the results of tension-tension tests carried out to ISO 2307:2010, ISO 18692:2007(E) and ISO/TS 19336:2015(E) on 12-strand rope with embedded electric cable constructions manufactured by Ashimori Industry Co. Ltd from Vectran fibres. The purpose of the tests was to characterise the performance of a novel strand construction (SSR) and compare this to a conventional 12-strand construction. Utilising the Dynamic Marine Component test facility (DMaC) at the University of Exeter several key performance metrics were determined including; elongation, minimum break load (MBL), quasi-static, dynamic stiffness and embedded cable resistance. During the ISO 2307:2010(E) test programme the samples were tested dry and during the ISO 18692:2007(E) and ISO/TS 19336:2015(E) test programmes the samples were fully submerged in tap water after being soaked in water for at least 24 hours. Two methods were used to quantify sample extension: i) an optical tracking system and ii) a potentiometer. Axial compression fatigue and cyclic loading endurance tests were also carried out on Vectran sample. Failure of the Vectran sample or embedded cable did not occur during tests carried out using DMaC. Further tests and sample analysis were also carried out by Ashimori Industry Co. Ltd. Quasi-static bedding-in at 50% MBS and cyclic load endurance test with 6000 cycles between 3.57% MBS and 53.6% MBS was completed. The Effective Working Length (EWL) was 3.821 m before testing and 3.974m after testing. The resistance of the cable increased from 9.6962 Ω to 9.7693Ω during the test and importantly the embedded cable did not fail. Each tensile loading cycle of the rope caused a measurable variation in wire resistance; approximately 0.01Ω. The data obtained during these tests will provide insight into the behaviour of these materials, which will be of use to rope manufacturers and mooring system designers, in addition to offshore equipment and vessel operators.

Author(s):  
S. D. Weller ◽  
P. Halswell ◽  
L. Johanning ◽  
T. Kosaka ◽  
H. Nakatsuka ◽  
...  

Synthetic fibre ropes are in widespread use in maritime applications ranging from lifting to temporary and permanent mooring systems for vessels, offshore equipment and platforms. The selection of synthetic ropes over conventional steel components is motivated by several key advantages including selectable axial stiffness, energy absorption (and hence load mitigation), fatigue resistance and low unit cost. The long-term use of ropes as safety critical components in potentially high dynamic loading environments necessitates that new designs are verified using stringent qualification procedures. The International Organization for Standardization (ISO) is one certification body that has produced several guidelines for the testing of synthetic ropes encompassing quasi-static and dynamic loading as well as fatigue cycling. This paper presents the results of tension-tension tests carried out to ISO 2307:2010, ISO 18692:2007(E) and ISO/TS 19336:2015(E) on three different 12-strand rope constructions manufactured by Ashimori Industry Co. Ltd from polyester and Vectran® fibres. The purpose of the tests was to characterise the performance of a novel 12-strand construction and compare this to a conventional 12-strand construction. Utilising the Dynamic Marine Component test facility (DMaC) at the University of Exeter several key performance metrics were determined including; elongation, minimum break load (MBL) and quasi-static and dynamic stiffness. During the ISO 2307:2010(E) test programme the samples were tested dry and during the ISO 18692:2007(E) and ISO/TS 19336:2015(E) test programmes the samples were fully submerged in tap water after being soaked for at least 24 hours. Two methods were used to quantify sample extension: i) an optical tracking system and ii) a draw-wire potentiometer. Axial compression fatigue and cyclic loading endurance tests were also carried out on two Vectran® samples. Further load-to-failure tests and sample analysis were also carried out by Ashimori Industry Co. Ltd. It was found that the MBL of the samples exceeded the values specified by the manufacturer (by 7.7–29.5% for the polyester samples) with failure occurring at the splices in all cases and minor abrasion noted in several locations. The measured MBL of the novel polyester Straight Strand Rope (SSR) construction was up to 16% higher than the conventional construction with increases of quasi-static and dynamic stiffness of up to 6.8%. Differences between the viscoelastic and viscoplastic behaviour of the samples were also noted. The data obtained during these tests will provide insight into the behaviour of these materials and different rope constructions which will be of use to rope manufacturers, mooring system designers in addition to offshore equipment and vessel operators.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Thomas Kerr ◽  
Andrew Crandall ◽  
Dara Childs ◽  
Adolfo Delgado

This paper introduces a test facility specifically designed to measure the axial stiffness and damping coefficients of an oil-lubricated thrust collar (TC). The geometry, load, and speeds of the test facility are representative of a production integrally geared compressor (IGC). Separate electric motors spin the shafts according to an assumed gear ratio; a pneumatic air piston loader provides a noncontacting, static thrust force; a remotely controlled impact hammer delivers a perturbation force; and eddy-current motion probes record the resulting vibration. The paper uses a one degree-of-freedom (1DOF) axial motion model that neglects the static and dynamic stiffness of the bull wheel (BW) and presents estimates of the TC oil-film dynamic coefficients for pinion spin speeds between 5 and 10 krpm, and static loads between 200 and 400 N, using time-domain (log-dec and damped period) and static load-deflection techniques. The measurements show that the TC oil-film develops appreciable stiffness (tens of MN/m), and the 1DOF model used here is inadequate for higher loads. Axial runout on the interfacing surfaces of the test facility TC and BW complicates parameter identification, but time-domain averaging effectively attenuates the runout while preserving the transient vibration that results from the impact hammer. Measurements of the TC oil-film stiffness, damping, and virtual mass coefficients are useful to machinery original equipment manufacturers (OEMs) or end-users seeking to predict or diagnose subsynchronous vibration in their machine that might be TC-related.


Author(s):  
Thomas Kerr ◽  
Andrew Crandall ◽  
Dara Childs ◽  
Adolfo Delgado

This paper introduces a test facility specifically designed to measure the axial stiffness and damping coefficients of an oil-lubricated thrust collar (TC). The geometry, load, and speeds of the test facility are representative of a production integrally geared compressor (IGC). Separate electric motors spin the shafts according to an assumed gear ratio, a pneumatic air piston loader provides a non-contacting, static thrust force, a remotely-controlled impact hammer delivers a perturbation force, and eddy-current motion probes record the resulting vibration. The paper uses a one degree of freedom (1DOF) axial motion model that neglects the static and dynamic stiffness of the bull wheel and presents estimates of the TC oil-film dynamic coefficients for pinion spin speeds between 5 and 10 krpm, and static loads between 200 and 400 N, using time-domain (log-dec and damped period) and static load-deflection techniques. The measurements show that the TC oil-film develops appreciable stiffness (tens of MN/m), and the 1DOF model used here is inadequate for higher loads. Axial runout on the interfacing surfaces of the test facility TC and bull wheel complicates parameter identification, but time-domain averaging effectively attenuates the runout while preserving the transient vibration that results from the impact hammer. Measurements of the TC oil-film stiffness, damping and virtual mass coefficients are useful to machinery OEMs or end-users seeking to predict or diagnose subsynchronous vibration in their machine that might be TC-related.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Konstantinos Pelechrinis ◽  
Wayne Winston

Abstract Soccer is undeniably the most popular sport world-wide and everyone from general managers and coaching staff to fans and media are interested in evaluating players’ performance. Metrics applied successfully in other sports, such as the (adjusted) +/− that allows for division of credit among a basketball team’s players, exhibit several challenges when applied to soccer due to severe co-linearities. Recently, a number of player evaluation metrics have been developed utilizing optical tracking data, but they are based on proprietary data. In this work, our objective is to develop an open framework that can estimate the expected contribution of a soccer player to his team’s winning chances using publicly available data. In particular, using data from (i) approximately 20,000 games from 11 European leagues over eight seasons, and, (ii) player ratings from the FIFA video game, we estimate through a Skellam regression model the importance of every line (attackers, midfielders, defenders and goalkeeping) in winning a soccer game. We consequently translate the model to expected league points added above a replacement player (eLPAR). This model can further be used as a guide for allocating a team’s salary budget to players based on their expected contributions on the pitch. We showcase similar applications using annual salary data from the English Premier League and identify evidence that in our dataset the market appears to under-value defensive line players relative to goalkeepers.


Author(s):  
Ryan L. Harne ◽  
Zhangxian Deng ◽  
Marcelo J. Dapino

Whether serving as mounts, isolators, or dampers, elastomer-based supports are common solutions to inhibit the transmission of waves and vibrations through engineered systems and therefore help to alleviate concerns of radiated noise from structural surfaces. The static and dynamic properties of elastomers govern the operational conditions over which the elastomers and host structures provide effective performance. Passive-adaptive tuning of properties can therefore broaden the useful working range of the material, making the system more robust to varying excitations and loads. While elastomer-based metamaterials are shown to adapt properties by many orders of magnitude according to the collapse of internal void architectures, researchers have not elucidated means to control these instability mechanisms such that they may be leveraged for on-demand tuning of static and dynamic properties. In addition, while magnetorheological elastomers (MREs) exhibit valuable performance-tuning control due to their intrinsic magnetic-elastic coupling, particularly with anisotropic magnetic particle alignment, the extent of their properties adaptation is not substantial when compared to metamaterials. Past studies have not identified means to apply anisotropic MREs in engineered metamaterials to activate the collapse mechanisms for tuning purposes. To address this limited understanding and effect significant performance adaptation in elastomer supports for structural vibration and noise control applications, this research explores a new concept for magnetoelastic metamaterials (MM) that leverage strategic magnetic particle alignment for unprecedented tunability of performance and functionality using non-contact actuation. MM specimens are fabricated using interrelated internal void topologies, with and without anisotropic MRE materials. Experimental characterization of stiffness, hysteretic loss, and dynamic force transmissibility assess the impact of the design variables upon performance metrics. For example, it is discovered that the mechanical properties may undergo significant adaptation, including two orders of magnitude change in mechanical power transmitted through an MM, according to the introduction of a 3 T free space external magnetic field. In addition, the variable collapse of the internal architectures is seen to tune static stiffness from finite to nearly vanishing values, while the dynamic stiffness shows as much as 50% change due to the collapsing architecture topology. Thus, strategically harnessing the internal architecture alongside magnetoelastic coupling is found to introduce a versatile means to tune the properties of the MM to achieve desired system performance across a broad range of working conditions. These results verify the research hypothesis and indicate that, when effectively leveraged, magnetoelastic metamaterials introduce remarkably versatile performance for engineering applications of vibration and noise control.


2019 ◽  
Vol 10 (1) ◽  
pp. 160-161
Author(s):  
Marina Efthymiou ◽  
Li Zou

The Air Transport Research Society (ATRS) was launched as a special interest group of the World Conference on Transport Research Society (WCTR) during the 7th Triennial WCTR Conference at Sydney in 1995. Headquartered at the Robert H. Smith School of Business at the University of Maryland, ATRS is a platform for exchanging research ideas and results and facilitating multi-national and/ or multi- disciplinary research collaborations. Professor Tae Oum is the ATRS Founder and Chair and Professor Martin Dresner is the President and CEO. ATRS has its networking committee consisting of representatives around the group including researchers, economists, consultants and professionals. Since 2001, ATRS has been producing on a yearly basis a Global Airport Benchmarking Report. The report provides over 30 performance metrics for measuring and assessing effects of the operating environment and service quality of the airport, and airport management strategies such as business diversification, outsourcing, etc. Initiated at the University of British Columbia, the annual Global Airport Performance Benchmarking project is currently hosted at the David B. O’Maley College of Business at Embry Riddle Aeronautical University in Daytona Beach, Florida. A task force, led by Professor Chunyan Yu, and consisting of 16 leading researchers from Asia Pacific, Europe and North America guides the development of the annual report released every summer. More than 200 airports and 20 airport groups are covered and benchmarked among peer airports worldwide and within the three regions currently including North America, Europe, and Asia Pacific & Oceania. With the objective of providing the most comprehensive and unbiased comparison of airports performance regarding productivity and efficiency, financial performance, unit cost competitiveness, and airport charges, the report currently consists of three parts. The first part provides a summary of the research methodology and main findings. The second part, which is the main body of the report, provides comparative assessments of airport performance and characteristics such as traffic volume, number of employees, terminal-airside capacity, and airport charges. The last part of the report presents a short profile of each airport, its new development and recent awards.


2004 ◽  
Vol 129 (1) ◽  
pp. 154-161 ◽  
Author(s):  
Mohsen Salehi ◽  
Hooshang Heshmat ◽  
James F. Walton

This paper presents the results of an experimental investigation into the dynamic structural stiffness and damping characteristics of a 21.6‐cm(8.5in.)-diameter compliant surface foil journal bearing. The goal of this development was to achieve high levels of damping without the use of oil, as is used in squeeze film dampers, while maintaining a nearly constant dynamic stiffness over a range of frequencies and amplitudes of motion. In the experimental work described herein, a full compliant foil bearing was designed, fabricated, and tested. The test facility included a non-rotating journal located inside the bearing. The journal was connected to an electrodynamic shaker so that dynamic forces simulating expected operating conditions could be applied to the structurally compliant bump foil elements. Excitation test frequencies to a maximum of 400Hz at amplitudes of motion between 25.4 and 102μm were applied to the damper assembly. During testing, both compressive preload and unidirectional static loads of up to 1335 and 445N, respectively, were applied to the damper assembly. The experimental data from these tests were analyzed using both a single degree of freedom model and an energy method. These methods of data analysis are reviewed here and results are compared. Excellent agreement in results obtained from the two methods was achieved. Equivalent viscous damping coefficients as high as 1050N.s∕cm(600lbf.s∕in) were obtained at low frequencies. Dynamic stiffness was shown to be fairly constant with frequency.


Author(s):  
Mohsen Salehi ◽  
Hooshang Heshmat ◽  
James F. Walton

This paper presents the results of an experimental investigation into the dynamic structural stiffness and damping characteristics of a 21.6 cm (8.5inch) diameter compliant surface foil journal bearing. The goal of this development was to achieve high levels of damping without the use of oil, as is used in squeeze film dampers, while maintaining a nearly constant dynamic stiffness over a range of frequencies and amplitudes of motion. In the experimental work described herein, a full compliant foil bearing was designed, fabricated and tested. The test facility included a non-rotating journal located inside the bearing. The journal was connected to an electrodynamic shaker so that dynamic forces simulating expected operating conditions could be applied to the structurally compliant bump foil elements. Excitation test frequencies to a maximum of 400 Hz at amplitudes of motion between 25.4μm to 102μm were applied to the damper assembly. During testing, both compressive preload and unidirectional static loads of up to 1335N and 445N, respectively, were applied to the damper assembly. The experimental data from these tests were analyzed using both a single degree of freedom model and an energy method. These methods of data analysis are reviewed here and results are compared. Excellent agreement in results obtained from the two methods was achieved. Equivalent viscous damping coefficients as high as 1050 N.s/cm (600 lbf.s/in) were obtained at low frequencies. Dynamic stiffness was shown to be fairly constant with frequency.


Author(s):  
Sudhir Kaul

Abstract Passive vibration isolators are widely used in multiple engineering applications to reduce resonance peaks or to mitigate transmissibility in the presence of internal or external sources of dynamic excitation. The design of a linear passive isolator involves multiple trade-offs. In the literature, different design configurations with nonlinearities have been investigated to limit some of these trade-offs. These include designs with quasi-zero stiffness (QZS) or high-static-low-dynamic stiffness (HSLDS) characteristics. This study investigates three viscoelastic models that incorporate stiffness nonlinearity along the non-isolating axes in order to exhibit more control over the dynamic response of the isolated system and possibly mitigate some of the design trade-offs. The dynamic response of these three models is compared to an existing HSLDS model in the literature. The three models investigated in this study are as follows: Kelvin-Voigt (or Voigt), Zener, and Generalized Maxwell (or Maxwell Ladder). These three models have been commonly used in the literature for vibration analysis of passive isolators. Two methods have been used for analysis, namely the Harmonic Balance Method (HBM) and explicit numerical integration. Test results from a previous study have been used for model characterization of all the models. It is observed that the modified Kelvin-Voigt model is analogous to the HSLDS model from the literature. For the isolator parameters used in this study, it is observed that the Kelvin-Voigt model with stiffness nonlinearity is able to exhibit characteristics similar to the HSLDS design, this includes the jump phenomenon as well as the hardening behavior. In general, all three models demonstrate that stiffness nonlinearity results in a reduction in peak transmissibility as well as an enhancement of the isolation bandwidth. The findings of this study could be useful in the design of passive isolation systems for products with significantly different multi-axial requirements with various design constraints.


Author(s):  
Arcandra Tahar ◽  
Djoni Sidarta ◽  
Alex Ran

Polyester mooring lines have been used in the offshore industry since the late ’90s. With increasing oil exploration and production in deeper waters, using polyester lines provides greater benefit than using traditional steel wires and chains. Some advantages of using polyester include a reduction of mooring line weight, a reduction in vessel offset and a reduction in the dynamics of the line tensions. However, unlike steel, polyester lines exhibit axial stiffness characteristics that are nonlinear and vary with time and loading history. Tahar (2001) developed a comprehensive theory and numerical tool to capture this behavior. The formulas allow relatively large elongation and nonlinear stress-strain relationships, as typically observed in polyester fibers. The mooring line dynamics are based on a rod theory and finite element method (FEM), with the governing equations described in a generalized coordinate system. Since this theory is computationally intensive, the benefits outweigh the costs less than they do for the practical approach recommended by API. Therefore, the fully coupled dynamic analysis tool CHARM3D has been modified to incorporate the API-recommended approach. Two axial stiffnesses (EA), post installation (static) stiffness and storm (dynamic) stiffness, have been convoluted into a dual stiffness to represent the total response of the floating platform in a single run. In the traditional method, the analyses are done twice, one run for each stiffness. Then, the extremes from each run are used as governing values for design. This paper presents the global performance comparison between the dual stiffness method and the traditional method. The effect of motions on SCR strength is also investigated using ABAQUS software.


Sign in / Sign up

Export Citation Format

Share Document