An Oxy-Hydrocarbon Model of Fossil Fuels

Author(s):  
Fred D. Lang ◽  
Tom Canning

This paper asserts a new method of analyzing fossil fuels, useful for sorting coals into well defined categories and for the identification of outlying ultimate analysis data. It describes a series of techniques starting with a new multi-variant approach for describing the lower Ranks of coal, progressing to a classical, but modified, single-variant approach for the volatile and high energy Ranks. In addition, for a few special cases, multiple low and high Ranks are also well described by the multi-variant approach. As useful as these techniques are for analyzing fuel chemistry in the laboratory arena, this work was initiated in support of Exergetic Systems’ Input/Loss Method. At commercial coal-fired power plants, Input/Loss allows the determination of fuel chemistry based on combustion effluents. The methods presented allow equations to be developed independent of combustion stoichiometrics, which improve Input/Loss accuracy in determining fuel chemistry on-line and in real time.

Author(s):  
Fred D. Lang ◽  
David A. T. Rodgers ◽  
Loren E. Mayer

This paper presents an on-line method which detects steam generator tube leaks and the heat exchanger in which the leak occurs. This method (the Tube Failure Model) has been demonstrated by direct testing experience. It is based on the Input/Loss Method, a patented method (1994–2004) which computes fuel chemistry, heating value and fuel flow by integrating effluent measurements (CEMS data) with thermodynamics. This paper explains the technology supporting the detection of tube failures, the method of identifying the location of the failure, and cites direct experience of detecting tube failures at two power plants. Most importantly, this paper presents the results of direct testing at the Boardman Coal Plant in which high energy steam/water lines were routed from the drain headers of all major heat exchangers into the combustion space. When allowed flow, these lines were used to emulate tube leaks from any of the major heat exchangers. Their flow rates and locations were then compared to Tube Failure Model predications. This testing is considered significant as for the first time Δheat rate effects of tube failures will be directly determined; and, further, this testing will provide the Tube Failure Model its on-line proof-of-process.


Author(s):  
Vijiapurapu Sowjanya ◽  
Robert Craven ◽  
Sastry Munukutla

Real-time performance monitoring of coal-fired power plants is becoming very important due to the impending deregulation of the electric power industry. Performance testing is made to be real-time by changing the traditional output loss method to include an estimation of coal composition based on the Continuous Emission Monitoring System (CEMS) data. This paper illustrates the robustness of the calculations by introducing a variance into each of the calculation inputs to access its effect on the final outputs of heatrate, boiler efficiency and coal flow. Though the original study was over five power plants this paper presents results for the two most diverse coals.


2013 ◽  
Vol 718-720 ◽  
pp. 420-423
Author(s):  
Yan Jun Zhao ◽  
Fan Wei Meng ◽  
Bin Qu

The gas-solid flow is widely used in the enterprises. The real-time solid mass flowrate measurement is an important role to the enterprise production. Based on the gas flowrate measurement principle of the Elbow, the new Double-Elbow real-time solid mass flowrate measurement method in the gas-solid flow is brought out in this paper. The new method can finger out the mass flowrate directly and need not measure the mixture density in advance. The instrument on measuring the solid mass flowrate is developed based on the new method; the instrument is using the 8031 as the MCU; the measurement result can be displayed on the LED. The experiment on measuring the solid mass flowrate is carried out in the pneumatic conveying system. The experimental results prove that the instrument can be real-time on-line measuring the solid mass flowrate.


1983 ◽  
pp. 63-69
Author(s):  
R.A. FOOKES ◽  
V.L. GRAVITIS ◽  
J.S. WATT ◽  
P.E. HARTLEY ◽  
C.E. CAMPBELL ◽  
...  
Keyword(s):  
On Line ◽  

2013 ◽  
Vol 18 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Yevgenia Chvertko ◽  
Mykola Shevchenko ◽  
Andriy Pirumov

Statistical methods of analysis are currently widely used to develop control and monitoring systems for different welding processes. These methods allow to obtain information about the process including effect of all factors on its results, which is often difficult to evaluate due to the complexity of the process. The authors made efforts to apply these methods to develop the system for monitoring the parameters of flash-butt welding in real-time mode. The paper gives brief information about the features of flash-butt welding of reinforcement bars and some basic limitation of this process application. The main reasons of formation of defects in welded joints are given as well as analysis of possibility of application of monitoring systems for their determination. The on-line monitoring system based on neural networks was developed for evaluation of process deviations. This system is believed to be adequate for determination of process violations resulting in disturbances of welding parameter and can be used for prediction of possible defects in the welded joints.


Author(s):  
Fred D. Lang

The Input/Loss Method is a unique process which allows for complete thermal understanding of a power plant through explicit determinations of fuel chemistry including fuel water and mineral matter, fuel heating (calorific) value, As-Fired fuel flow, effluent flow, boiler efficiency and system heat rate. Input consists of routine plant data and any parameter which effects system stoichiometrics, including: Stack CO2, Boiler or Stack O2, and, generally, Stack H2O. It is intended for on-line monitoring of coal-fired systems; effluent flow is not measured, plant indicated fuel flow is typically used only for comparison to the computed. The base technology of the Input/Loss Method was documented in companion ASME papers: Parts I, II and III (IJPGC 1998-Pwr-33, IJPGC 1999-Pwr-34 and IJPGC 2000-15079/CD). The Input/Loss Method is protected by US and foreign patents (1994–2004). This Part IV presents details of the Method’s ability to correct any data which effects system stoichiometrics, data obtained either by direct measurements or by assumptions, using multi-dimensional minimization techniques. This is termed the Error Analysis feature of the Input/Loss Method. Addressing errors in combustion effluent measurements is of critical importance for any practical on-line monitoring of a coal-fired unit in which fuel chemistry is being computed. It is based, in part, on an “L Factor” which has been proven to be remarkably constant for a given source of coal; and, indeed, even constant for entire Ranks. The Error Analysis feature assures that every computed fuel chemistry is the most applicable for a given set of system stoichiometrics and effluents. In addition, this paper presents comparisons of computed heating values to grab samples obtained from train deliveries. Such comparisons would not be possible without the Error Analysis.


2006 ◽  
Vol 39 (6) ◽  
pp. 850-855 ◽  
Author(s):  
E. MacA. Gray ◽  
D. J. Cookson ◽  
T. P. Blach

A pressure cell designed for high-energy X-ray diffraction in transmission mode is described. The cell is intended for use at temperatures up to 573 K with samples that are large enough to permit the real-time determination of the amount of absorbed gas by measuring the gas pressure. The design is driven by the need to ensure that the sample temperature is constant and uniform, despite the heat flow accompanying the reaction between the gas and the sample. The use of the cell is illustrated by its application to elucidating the hydriding phase transformation in the LaNi5–H2system.


1988 ◽  
Vol 21 (11) ◽  
pp. 395-401
Author(s):  
Y. Tamura ◽  
Y. Fukuyama ◽  
S. Yazawa ◽  
J. Hosaka ◽  
N. Joho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document