Hydrogen Production by Bio-Fuel Steam Reforming at Low Reaction Temperature

Author(s):  
Tsuyoshi Maeda ◽  
Toshio Shinoki ◽  
Jiro Funaki ◽  
Katsuya Hirata

The authors reveal the dominant chemical reactions and the optimum conditions, supposing the design of ethanol steam-reforming reactors. Specifically speaking, experiments are conducted for Cu/ZnO/Al2O3 catalyst, together with those for Ru/Al2O3 catalyst for reference. Using a household-use-scale reactor with well-controlled temperature distributions, the authors compare experimental results with chemical-equilibrium theories. It has revealed by Shinoki et al. (2011) that the Cu/ZnO/Al2O3 catalyst shows rather high performance with high hydrogen concentration CH2 at low values of reaction temperature TR. Because, the Cu/ZnO/Al2O3 catalyst promotes the ethanol-steam-reforming and water-gas-shift reactions, but does not promote the methanation reaction. So, in the present study, the authors reveal that the Ru/Al2O3 catalyst needs high TR > 770 K for better performance than the Cu/ZnO/Al2O3 catalyst, and that the Ru/Al2O3 catalyst shows lower performance at TR < 770 K. Then, the Ru/Al2O3 catalyst is considered to activate all the three reactions even at low TR. Furthermore, concerning the Cu/ZnO/Al2O3 catalyst, the authors reveal the influences of liquid-hourly space velocity LHSV upon concentrations such as CH2, CCO2, CCO and CCH4 and the influence of LHSV upon the ethanol conversion XC2H5OH, in a range of LHSV from 0.05 h−1 to 0.8 h−1, at S/C = 3.0 and TR = 520 K. And, the authors reveal the influences of the thermal profile upon CH2, CCO2, CCO, CCH4 and XC2H5OH, for several LHSV’s. To conclude, with well-controlled temperatures, the reformed gas can be close to the theory. In addition, the authors investigate the influences of S/C.

Author(s):  
Yuki Okuhigashi ◽  
Toshio Shinoki ◽  
Jiro Funaki ◽  
Katsuya Hirata

The authors reveal the dominant chemical reactions and the optimum conditions, supposing the design of ethanol steam-reforming reactors. Specifically, experiments are conducted for Cu/ZnO/Al2O3 catalyst, together with those for Ru/Al2O3 catalyst for reference. Using a household-use-scale reactor with well-controlled temperature distributions, the authors compare experimental results with chemical-equilibrium theories. As a result, the Cu/ZnO/Al2O3 catalyst shows rather high performance at low values of reaction temperature T. This suggests that the Cu/ZnO/Al2O3 catalyst promotes the ethanol-steam-reforming and water-gas-shift reactions, but does not promote the methanation reaction. Furthermore, the authors have researched the influence of liquid-hourly space velocity LHSV upon the ethanol conversion XC2H5OH in the range of LHSV from 0.05 to 1.40h−1, S/C = 3.0 and T = 420K, 470K and 520K, and the influence of LHSV upon concentrations such as CH2, CCO2, CCO and CCH4 in the range of LHSV from 0.05 to 1.20h−1, at S/C = 3.0 and T = 470K. In addition, the authors have proposed a new and simple method to recover the catalyst performance.


2012 ◽  
Vol 78 (787) ◽  
pp. 415-419 ◽  
Author(s):  
Toshio SHINOKI ◽  
Tsuyoshi MAEDA ◽  
Jiro FUNAKI ◽  
Katsuya HIRATA

Nanoscale ◽  
2020 ◽  
Vol 12 (31) ◽  
pp. 16605-16616
Author(s):  
Rong Dai ◽  
Ziliang Zheng ◽  
Chenshuai Lian ◽  
Kai Shi ◽  
Xu Wu ◽  
...  

The core@shell Ni–Cu@CS nanocatalyst synthesized via a reverse micelle system exhibited an excellent anti-sintering performance, while the unique characteristics of its shell suppress carbon deposition in the ESR reaction.


2004 ◽  
Vol 98 (1-2) ◽  
pp. 61-68 ◽  
Author(s):  
José Comas ◽  
Fernando Mariño ◽  
Miguel Laborde ◽  
Norma Amadeo

2016 ◽  
Vol 11 (1) ◽  
pp. 51-55 ◽  
Author(s):  
K. Ghasemzadeh ◽  
R. Zeynali ◽  
F. Ahmadnejad ◽  
A. A. Babalou ◽  
A. Basile

Abstract The main purpose of present study is the analysis of dense palladium membrane reactor (MR) performance during ethanol steam reforming (ESR) reaction using computational fluid dynamic (CFD). To this aim, a two-dimensional and isothermal model based on CFD method was developed and results validation was tested by our experimental data achieved in ITM-CNR of Italy. In this work, Pd-based MR modeling was performed by using COMSOL-MULTIPHYSICS software. Regarding to model validation results, a good agreement was found between CFD model results and experimental data. Moreover, in this study, the effects of the some important operating parameters (reaction temperature and pressure) on the performance of Pd-based MR was studied in terms of ethanol conversion and hydrogen recovery. Concerning to simulation results, the CFD model presented velocity and pressure profiles in both side of MR and also compositions of various species in permeate and retentate streams. The simulation results indicated that the Pd-based MR has better performance with respect to traditional reactor (TR) in terms of the ethanol conversion, especially, at lower reaction temperatures and higher reactions pressures. As a consequence, CFD model results illustrated that Pd-based MR performance was improved by increasing the reaction pressure, while this parameter had negative effect on the TR performance. This result related to enhancement of hydrogen permeance through the palladium membrane by increasing the pressure gradient. Indeed, this shift effect can provide a higher ethanol conversion in lower temperatures in the Pd-based MR. In particular, 98% ethanol conversion and 37% hydrogen recovery was achieved at 350°C and 2 atm.


2012 ◽  
Vol 512-515 ◽  
pp. 2257-2261 ◽  
Author(s):  
Hong Da Wu ◽  
Ying Gui Jia ◽  
Yu Yin ◽  
Lue Zhao

Y2O3-ZrO2 support was prepared by two-step precipitation method with ammonia and oxalic acid. A series of Cu-Ni/Y2O3-ZrO2 catalysts were prepared by impregnation method. The catalysts were investigated and then characterized by XRD and SEM results. The activity of catalysts in ethanol steam reforming was studied. The effects of the catalyst composition on the ethanol conversion rate were discussed and the catalysts inactivation phenomenon under the temperature ranging from 673K to 723K was then analyzed. The results show that 1Cu9Ni/1Y9Zr catalyst has higher activity in ethanol steam reforming, over which ethanol conversion rate is higher than 98% under the situation of 623K, while the inactivation of catalysts with Cu/Ni>3/7 at 673K~723K was caused by carbon deposition .


2021 ◽  
Vol 19 (1) ◽  
pp. 696-708
Author(s):  
Symbat Muratbekovna Naurzkulova ◽  
Marina Vasilievna Arapova ◽  
Arcady Vladimirovich Ishchenko ◽  
Tamara Andreevna Krieger ◽  
Andrei Aleksandrovich Saraev ◽  
...  

Abstract Ethanol steam reforming catalyst’s precursors, i.e., nanocomposites of complex oxides with the general formula [Pr0.15Sm0.15Ce0.35Zr0.35O2 + LaMn0.45Ni0.45Ru0.1O3] (1:1 by mass), were synthesized by three different methods. It was shown that two synthesis methods – ultrasonic dispersion and sequential polymeric method, lead to the formation of the nanocomposite perovskite–fluorite system with the specific surface area up to 50 m2/g. Reduction of samples at 400–500°C lead to the formation of Ni–Ru alloy nanoparticles strongly bound with the surface of oxide nanocomposite. Catalytic tests in ethanol steam reforming reaction at 500–600°C showed the highest specific activity of the sample prepared by the sequential polymeric method due to the location of Ni- and Ru-containing perovskite mainly on the surface of the composite providing a high concentration of active metal centers. At higher temperatures for all samples, ethanol conversion approached 100% with hydrogen yield varying in the range of 65–75%. A study of spent catalysts confirmed the absence of carbon deposits after long-term catalytic tests at 650°C.


Sign in / Sign up

Export Citation Format

Share Document