Thermodynamic Analysis of Solid Oxide Fuel Cell and Gas Turbine Hybrid System Fueled With Gasified Biomass

Author(s):  
Xiaojing Lv ◽  
Xiaoru Geng ◽  
Yiwu Weng

In this work, the detailed model of a high temperature Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) hybrid system was established by using MATLAB/Simulink platform, based on the equations of mass and energy balance and thermodynamic characteristics, with the consideration of various polarization losses and fuel cell heat loss. Influence of different biomass gases on the hybrid system performance was studied. Results show that the electrical efficiency could reach up to over 50% with four types of gasified biomass, higher than other hybrid power system using biomass gases. Biomass gases from different sources have different composition and calorific value, which significantly affect the hybrid system performance. The system output power and efficiency fueled with wood chip gas are higher than the system fueled with other three types of fuel. Restricted by compressor surge safety zone, the adjustable range of biomass gas fuel flow rate is small. The speed of the gas turbine has a significant impact on the hybrid system parameters such as output power and efficiency. When the rotational speed of the gas turbine is lower than the rated value, the hybrid system performance parameters change significantly, on the contrary, the hybrid system performance parameters change slightly.

Author(s):  
Xiaoyi Ding ◽  
Xiaojing Lv ◽  
Yiwu Weng

In this work, the detailed model of intermediate temperature solid oxide fuel cell (IT-SOFC) and gas turbine (GT) hybrid system with biomass gas (wood chip gas) as fuel was built, with the consideration of fuel cell potential loss such as polarization loss and heat loss. Detailed performance of key component such as reformer, fuel cell and gas turbine of the hybrid system was studied under different biomass gas fuel compositions and steam/carbon ([S]/[C]) ratios. The results show that the hybrid system can reach the efficiency of 59.24% under the designed working condition. The biomass gas from different sources and processes usually have varied fuel concentrations, especially for methane (CH4), hydrogen (H2), carbon monoxide (CO) and water (H2O), which could significantly affect the performance of hybrid system. Results show that the change of H2 proportion has the most significant influence to system output power, CO and CH4 have similar influence trend. System electrical efficiency increases slightly with the change of H2 proportion while decreasing significantly with the increase of CO and CH4 proportion. The increasing composition of CH4, H2 and CO in biomass gas fuel benefits the output power of hybrid system, but results in the higher risk of overheat as well, which might cause safety problems. The composition of water in biomass gas affects the [S]/[C] ratio of system, and results show that maintaining the [S]/[C] ratio at a certain level can guarantee the temperature of key components in the hybrid system below the limits, which can satisfy the safety standards. The results show this technology has a good application prospect. (CSPE)


2012 ◽  
Vol 138 (4) ◽  
pp. 205-214 ◽  
Author(s):  
Hsiao-Wei D. Chiang ◽  
Chih-Neng Hsu ◽  
Wu-Bin Huang ◽  
Chien-Hsiung Lee ◽  
Wei-Ping Huang ◽  
...  

Author(s):  
Wei Jiang ◽  
Ruxian Fang ◽  
Jamil A. Khan ◽  
Roger A. Dougal

Fuel Cell is widely regarded as a potential alternative in the electric utility due to its distinct advantages of high energy conversion efficiency, low environmental impact and flexible uses of fuel types. In this paper we demonstrate the enhancement of thermal efficiency and power density of the power plant system by incorporating a hybrid cycle of Solid Oxide Fuel Cell (SOFC) and gas turbine with appropriate configurations. In this paper, a hybrid system composed of SOFC, gas turbine, compressor and high temperature heat exchanger is developed and simulated in the Virtual Test Bed (VTB) computational environment. The one-dimensional tubular SOFC model is based on the electrochemical and thermal modeling, accounting for the voltage losses and temperature dynamics. The single cell is discretized using a finite volume method where all the governing equations are solved for each finite volume. Simulation results show that the SOFC-GT hybrid system could achieve a 70% total electrical efficiency (LHV) and an electrical power output of 853KW, around 30% of which is produced by the power turbine. Two conventional power plant systems, i.e. gas turbine recuperative cycle and pure Fuel Cell power cycle, are also simulated for the performance comparison to validate the improved performance of Fuel Cell/Gas Turbine hybrid system. Finally, the dynamic behavior of the hybrid system is presented and analyzed based on the system simulation.


2010 ◽  
Vol 171-172 ◽  
pp. 319-322
Author(s):  
Hong Bin Zhao ◽  
Xu Liu

The simulation and analyses of a “bottoming cycle” solid oxide fuel cell–gas turbine (SOFC–GT) hybrid system at the standard atmospheric condition is presented in this paper. The fuel cell model used in this research work is based on a tubular Siemens–Westinghouse–type SOFC with 1.8MW capacity. Energy and exergy analyses of the whole system at fixed conditions are carried out. Then, comparisons of the exergy destruction and exergy efficiency of each component are also conducted to determine the potential capability of the hybrid system to generate power. Moreover, the effects of operating conditions including fuel flow rate and SOFC operating temperature on performances of the hybrid system are analyzed.


Sign in / Sign up

Export Citation Format

Share Document