Stress Analysis and the Sealing Performance Evaluation of Pipe Flange Connection With Spiral Wound Gaskets Under Internal Pressure

Author(s):  
Toshiyuki Sawa ◽  
Naofumi Ogata

This paper deals with the stress analysis of a pipe flange connection with a spiral wound gasket using the elasto-plastic finite element method taking account the hysteresis and the non-linearity in the stress-strain curve of the spiral wound gasket, when an intemal pressure is applied to the pipe flange connections with the different nominal diameters from 2″ to 20″. The effects of the nominal diameter of the pipe flange on the contact stress distributions at the interfaces are examined. Leakage tests of the pipe flange connections with 3″ and 20″ nominal diameters were conducted and measurement of the axial bolt force was also performed. The results by the finite element analysis are fairly consistent with the experimental results concerning the variation in the axial bolt force. By using the contact stress distributions and the results of the leakage test, the new gasket constants are evaluated. As a result, it is found that the variations in the contact stress distributions are substantial due to the flange rotation in the pipe flange connections with the larger nominal diameter. In addition, a method to determine the bolt preload for a given tightness parameter is demonstrated.

Author(s):  
Toshiyuki Sawa ◽  
Satoshi Nagata ◽  
Naofumi Ogata

This paper deals with the stress analysis of a pipe flange connection with a spiral wound gasket using the elasto-plastic finite element method taking account the hysteresis and the non-linearity in the stress-strain curve of the spiral wound gasket, when an internal pressure is applied to the pipe flange connections with the different nominal diameters from 2 to 20. The effects of the nominal diameter of the pipe flange on the contact stress distributions at the interfaces are examined. Leakage tests of the pipe flange connections with 3 and 20 nominal diameters were conducted and measurement of the axial bolt force was also performed. The results by the finite element analysis are fairly consistent with the experimental results concerning the variation in the axial bolt force. By using the contact stress distributions and the results of the leakage test, the new gasket constants are evaluated. As a result, it is found that the variations in the contact stress distributions are substantial due to the flange rotation in the pipe flange connections with the larger nominal diameter. In addition, a method to determine the bolt preload for a given tightness parameter is demonstrated.


Author(s):  
Toshiyuki Sawa ◽  
Takashi Kobayashi ◽  
Hirokazu Tsuji ◽  
Satoshi Nagata

This paper deals with the stress analysis of a pipe flange connection with a spiral wound gasket using the elasto-plastic finite element method when an internal pressure is applied to the pipe flange connections with the different nominal diameters from 2″ to 20″. The effects of the nominal diameter of the pipe flange on the contact stress distributions at the interfaces and the hub stress are examined. Leakage tests of the pipe flange connections with 3″ and 20″ nominal diameters were conducted and measurement of the axial bolt force was also performed. The results by the finite element analysis are fairly consistent with the experimental results concerning the variation in the axial bolt force (Load factor). By using the contact stress distributions and the results of the leakage test, the modified gasket constants are proposed and compared with PVRC values. As a result, it is found that the variations in the contact stress distributions are substantial due to the flange rotation in the pipe flange connections with the larger nominal diameter. The hub stress has been overestimated by ASME method. In addition, a method to determine the bolt preload for a given tightness parameter and a rational design method for pipe flange connections are demonstrated.


Author(s):  
Toshiyuki Sawa ◽  
Wataru Maezaki

The contact gasket stress distributions of a non-circular flange connection with a compressed asbestos sheet gasket subjected to internal pressure were analyzed taking account a hysteresis of the gasket by using finite element method (FEM). Leakage tests were also conducted using an actual non-circular flange connection with a compressed asbestos sheet gasket under internal pressure. By using the contact gasket stress distributions and the results of the leakage tests, the new gasket constants were calculated. A difference in the new gasket constants between the values obtained from the present study and those by the PVRC procedure was substantial. In addition, a method to determine the initial clamping bolt force (bolt preload) for a given tightness parameter was demonstrated. abstract text here.


2005 ◽  
Vol 128 (1) ◽  
pp. 103-108 ◽  
Author(s):  
Toshiyuki Sawa ◽  
Satoshi Nagata ◽  
Hirokazu Tsuji

This paper deals with some studies carried out in the bolted flanged connection committee (BFC) in Japan Pressure Vessel Council (JPVRC) on the stress analysis of a pipe flange connection using the elastoplastic finite element method. The characteristics of the connections with the different nominal diameters from 2in. to 20in. such as the contact gasket stress distribution, the hub stress, and the load factors were examined. The results from the finite element analyses were fairly consistent with the experimental results concerning the variation in the axial bolt force. By using the contact stress distributions and the results of the leakage test, the new gasket constants were evaluated. As a result, it was found that the variations in the contact stress distributions were substantial due to the flange rotation in the pipe flange connections with the larger nominal diameter. A method to determine the bolt preload for a given tightness parameter was demonstrated and the difference in the bolt preload between our research and PVRC was shown. In addition, the characteristics of pipe flange connection under a bending moment and internal pressure were also discussed and a newly developed bolt tightening method was demonstrated.


Author(s):  
Toshiyuki Sawa ◽  
Ryo Kurosawa ◽  
Wataru Maezaki

The contact gasket stress distributions of a non-circular flange connection with a compressed sheet gasket subjected to internal pressure were analyzed taking into account of the hysteresis behavior of the gasket by using the finite element method (FEM). Leakage tests were also conducted using an actual non-circular flange connection with a compressed sheet gasket under internal pressure. Using the contact gasket stress distributions and the results of the leakage tests, the new gasket constants were calculated. The difference in the new gasket constants between the values obtained from the present study and those by the PVRC procedure was substantial. In addition, a method to determine the initial clamping bolt force (bolt preload) for a given tightness parameter was demonstrated.


Author(s):  
Toshiyuki Sawa ◽  
Mitsuhiro Matsumoto ◽  
Satoshi Nagata

It has been well known that a scatter in axial bolt forces of pipe flange connections tightened by the torque control method is substantial. It is necessary for evaluating the sealing performance of the pipe flange connections with the gaskets subjected to intemal pressure to know the contact gasket stress distributions due to the scatter of the axial bolt forces in the connections tightened by the torque control method. This paper deals with the leakage of the pipe flange connections with a spiral wound gasket and that with a compressed sheet gasket tightened by the torque control method. The scatter in the axial bolt forces was measured in the experiments. The contact gasket stress distributions at the interfaces of the pipe flange connections with the gaskets were calculated under the measured axial bolt forces by using elasto-plastic finite element method (FEM) taking into account hysteresis and non-linearity in the stress-strain curves of the gaskets. The effects of the scatter in the axial bolt forces tightened by the torque control method on the gas leakage were also examined by using the actual pipe flange connections. As the result, a difference in an amount of gas leakage measured was found to be substantial between our study and PVRC procedure. By using the calculated contact gasket stress distributions under the internal pressure and the results of the leakage tests, the sealing performance was evaluated. It is found that the sealing performance is worse in the actual pipe flange connection than that evaluated by PVRC procedure.


Author(s):  
P A Dabnichki ◽  
A D Crocombe ◽  
S C Hughes

Non-linear finite element analysis has been used to investigate the contact problem between a buttock and a cushion of varying properties. The buttock tissue has been modelled on the macroscale by assuming it to be a hyperelastic (rubber-like) material with properties that correspond to the overall buttock response. Both rigid and flexible cushions have been considered. The contact between the cushion and the buttock has been modelled assuming both friction and friction-free conditions. The effect of these parameters on the buttock-cushion deformation and the tissue compressive and shear stress distributions have been presented. This study forms part of work towards the development of body segment simulators for use in investigations of seating and other support surfaces.


Author(s):  
Toshiyuki Sawa ◽  
Rie Higuchi

The stresses of a bolted flange connection with a cover of pressure vessel (CPV) in which a spiral wound gasket is inserted, under internal pressure are analyzed taking account a hysteresis of the gasket by using the finite element method (FEM). The leakage tests were also conducted using an actual bolted flange connection with a CPV with a spiral wound gasket. Using the contact stress distribution of the bolted flange connection with a CPV under internal pressure and the tightness parameter, the values of the new gasket constants were obtained by taking into account the changes in the contact stress. A difference in the new gasket constants between the estimated values obtained from the actual bolted flange connection with a CPV and the values obtained by the PVRC procedure was small. In addition, a method to determine the bolt preload for a given tightness parameter was demonstrated. The obtained results of the bolt preload for the bolted flange connection with a CPV were in a fairly good agreement with those obtained by the PVRC procedure under a lower pressure application. However, a difference in the bolt preload was about 7% when the internal pressure was increased.


Author(s):  
Toshiyuki Sawa ◽  
Takeshi Iwamoto ◽  
Kensuke Funada ◽  
Yuya Omiya

The leakage evaluation when gas is used is more severe than that when liquid is used in pipe flange connections. In a practical design, it is also necessary to examine the leakage in the connections under liquid internal pressure application. The contact gasket stress distribution in the connection with a spiral wound gasket subjected to internal pressure and bending moments were analyzed using elasto-plastic (EP) finite element method (FEM) taking account hysteresis and nonlinearity in the stress-strain curve of the gasket. The effects of initial clamping bolt force (bolt preload), the nominal pressure and the nominal diameter of pipe flange and the equivalent pressure when the leakage occurs on the contact gasket stress distributions were examined. The leakage tests for the connections under the bending moments and the internal pressure were also conducted by using liquid (water). By using the results of the leakage tests and the calculated contact gasket stress distributions, the sealing performance of the connections was evaluated. It was found that the sealing performance of the connection can be estimated when liquid (water) was used, that is, when the contact gasket stress becomes zero, the leakage occurs. In addition, a method for determining the bolt preload in the connections under the bending moments was proposed for the reliable design.


Sign in / Sign up

Export Citation Format

Share Document