Transient Analysis of Heat Conduction in Orthotropic Medium by the DQEM and EDQ Based Time Integration Schemes

Author(s):  
Chang-New Chen

The transient heat conduction in orthotropic medium is solved by using the DQEM to the spacial discretization and EDQ to the temporal discretization. In the DQEM discretization, DQ is used to define the discrete element model. Discrete transient equations defined at interior nodes in all elements, transition conditions defined on the inter-element boundary of two adjacent elements and boundary conditions at the structural boundary form a transient equation system at a specified time stage. The transient equation system is solved by the direct time integration schemes of time-element by time-element method and stages by stages method which are developed by using EDQ and DQ. Numerical results obtained by the developed numerical algorithms are presented. They demonstrate the developed numerical solution procedure.

Author(s):  
Chang-New Chen

The dynamic response of frame structures is solved by using the DQEM to the spacial discretization and EDQ to the temporal discretization. In the DQEM discretization, EDQ is also used to define the discrete element model. Discrete dynamic equilibrium equations defined at interior nodes in all elements, transition conditions defined on the inter-element boundary of two adjacent elements and boundary conditions at the structural boundary form a dynamic equation system at a specified time stage. The dynamic equilibrium equation system can be solved by the direct time integration schemes of time-element by time-element method and stages by stages method which are developed by using EDQ and DQ. Numerical procedures and numerical results are presented.


Author(s):  
Chang-New Chen

The dynamic response of shear-deformable axisymmetric orthotropic circular plate structures is solved by using the DQEM to the spacial discretization and EDQ to the temporal discretization. In the DQEM discretization, DQ is used to define the discrete element model. Discrete dynamic equilibrium equations defined at interior nodes in all elements, transition conditions defined on the inter-element boundary of two adjacent elements and boundary conditions at the structural boundary form a dynamic equation system at a specified time stage. The dynamic equilibrium equation system is solved by the direct time integration schemes of time-element by time-element method and stages by stages method which are developed by using EDQ and DQ. Numerical results obtained by the developed numerical algorithms are presented. They demonstrate the developed numerical solution procedure.


Author(s):  
Chang-New Chen

The dynamic response of composite two-dimensional elasticity problems is solved by using the DQEM to the spacial discretization and EDQ to the temporal discretization. In the DQEM discretization, DQ is used to define the discrete element model. Discrete dynamic equilibrium equations defined at interior nodes in all elements, transition conditions defined on the inter-element boundary of two adjacent elements and boundary conditions at the structural boundary form a dynamic equation system at a specified time stage. The dynamic equilibrium equation system can be solved by the direct time integration schemes of time-element by time-element method and stages by stages method which are developed by using EDQ and DQ. Numerical procedures and numerical results are presented.


Author(s):  
Chang-New Chen

The dynamic response of Timoshenko beam structures is solved by using the DQEM to the space discretization and EDQ to the time discretization. In the DQEM discretization, DQ is used to define the discrete element model. Discrete dynamic equilibrium equations defined at interior nodes in all elements, transition conditions defined on the inter-element boundary of two adjacent elements and boundary conditions at the structural boundary form a dynamic equation system at a specified time stage. The dynamic equilibrium equation system is solved by the direct time integration schemes of time-element by time-element method and stages by stages method which are developed by using EDQ and DQ. Numerical results obtained by the developed numerical algorithms are presented. They demonstrate the developed numerical solution procedure.


Author(s):  
Tsu-Te Wu ◽  
William E. Jones ◽  
Mark A. Phifer

This paper presents a quasi-static technique to evaluate the structural deformation of the four stacked B-25 boxes subjected to the static loads of overlaying soil and to determine the effect of corrosion on the deformation. Although the boxes are subjected to a static load, the structural responses of the boxes vary with time. The analytical results indeed show that the deflection, buckling and post buckling of the components of the stacked boxes occur in sequence rather than simultaneously. Therefore, it is more appropriate to treat the problems considered as quasistatic rather than static; namely, the structural response of the stacked boxes are dynamic but with very long duration. Furthermore, the finite-element model has complex contact and slide conditions between the interfaces of the adjoining components, and thus its numerical solution is more tractable by using explicit time integration schemes. The analysis covers the three corrosion scenarios following various time lengths of initial burial under an interim soil cover. The results qualitatively agree with expected differences in deformation for different degrees of corrosion subsidence potential reduction that can be achieved.


Author(s):  
Thomas Paris ◽  
Khémaïs Saanouni

This paper deals with the numerical treatment of "advanced" elasto-viscoplasticdamage constitutive equations in the particular case of plane stress. The viscoplastic constitutive equations account for the mixed isotropic and kinematic non linear hardening and are fully coupled with the isotropic ductile damage. The viscous effect is indifferently described by a power function (Norton type) or an hyperbolic sine function. Different time integration schemes are used and compared to each other assuming plane stress condition, widely used when dealing with shell structures as well as to the 3D reference case.


Sign in / Sign up

Export Citation Format

Share Document